134 resultados para Nitrogen fixing plants
em Queensland University of Technology - ePrints Archive
Resumo:
Background There has been growing interest in mixed species plantation systems because of their potential to provide a range of socio-economic and bio-physical benefits which can be matched to the diverse needs of smallholders and communities. Potential benefits include the production of a range of forest products for home and commercial use; improved soil fertility especially when nitrogen fixing species are included; improved survival rates and greater productivity of species; a reduction in the amount of damage from pests or disease; and improved biodiversity and wildlife habitats. Despite these documented services and growing interest in mixed species plantation systems, the actual planting areas in the tropics are low, and monocultures are still preferred for industrial plantings and many reforestation programs because of perceived higher economic returns and readily available information about the species and their silviculture. In contrast, there are few guidelines for the design and management of mixed-species systems, including the social and ecological factors of successful mixed species plantings. Methods This protocol explains the methodology used to investigate the following question: What is the available evidence for the relative performance of different designs of mixed-species plantings for smallholder and community forestry in the tropics? This study will systematically search, identify and describe studies related to mixed species plantings across tropical and temperate zones to identify the social and ecological factors that affect polyculture systems. The objectives of this study are first to identify the evidence of biophysical or socio-economic factors that have been considered when designing mixed species systems for community and smallholder forestry in the tropics; and second, to identify gaps in research of mixed species plantations. Results of the study will help create guidelines that can assist practitioners, scientists and farmers to better design mixed species plantation systems for smallholders in the tropics.
Resumo:
Plants subjected to increases in the supply of resource(s) limiting growth may allocate more of those resources to existing leaves, increasing photosynthetic capacity, and/or to production of more leaves, increasing whole-plant photosynthesis. The responses of three populations of the alpine willow, Salix glauca, growing along an alpine topographic sequence representing a gradient in soil moisture and organic matter, and thus potential N supply, to N amendments, were measured over two growing seasons, to elucidate patterns of leaf versus shoot photosynthetic responses. Leaf-(foliar N, photosynthesis rates, photosynthetic N-use efficiency) and shoot-(leaf area per shoot, number of leaves per shoot, stem weight, N resorption efficiency) level measurements were made to examine the spatial and temporal variation in these potential responses to increased N availability. The predominant response of the willows to N fertilization was at the shoot-level, by production of greater leaf area per shoot. Greater leaf area occurred due to production of larger leaves in both years of the experiment and to production of more leaves during the second year of fertilization treatment. Significant leaf-level photosynthetic response occurred only during the first year of treatment, and only in the dry meadow population. Variation in photosynthesis rates was related more to variation in stomatal conductance than to foliar N concentration. Stomatal conductance in turn was significantly related to N fertilization. Differences among the populations in photosynthesis, foliar N, leaf production, and responses to N fertilization indicate N availability may be lowest in the dry meadow population, and highest in the ridge population. This result is contrary to the hypothesis that a gradient of plant available N corresponds with a snowpack/topographic gradient.
Resumo:
Polymerase chain reaction (PCR) was developed for the detection of Banana bunchy top virus (BBTV) at maximum after 210 min and at minimum after 90 min using Pc-1 and Pc-2, respectively. PCR detection of BBTV in crude sap indicated that the freezing of banana tissue in liquid nitrogen (LN2) before extraction was more effective than using sand as the extraction technique. BBTV was also detected using PCR assay in 69 healthy and diseased plants using Na-PO4 buffer containing 1 % SDS. PCR detection of BBTV in nucleic acid extracts using seven different extraction buffers to adapt the use of PCR in routine detection in the field was studied. Results proved that BBTV was detected with high sensitivity in nucleic acid extracts more than in infectious sap. The results also suggested the common aetiology for the BBTV by the PCR reactions of BBTV in nucleic acid extracts from Australia, Burundi, Egypt, France, Gabon, Philippines and Taiwan. Results also proved a positive relation between the Egyptian-BBTV isolate and abaca bunchy top isolate from the Philippines, but there no relation was found with the Cucumber mosaic cucumovirus (CMV) isolates from Egypt and Philippines and Banana bract mosaic virus (BBMV) were found.
Resumo:
In wastewater treatment plants based on anaerobic digestion, supernatant and outflows from sludge dewatering systems contain significantly high amount of ammonium. Generally, these waters are returned to the head of wastewater treatment plant (WWTP), thereby increasing the total nitrogen load of the influent flow. Ammonium from these waters can be recovered and commercially utilised using novel ion-exchange materials. Mackinnon et al. have described an approach for removal and recovery of ammonium from side stream centrate returns obtained from anaerobic digester of a typical WWTP. Most of the ammonium from side streams can potentially be removed, which significantly reduces overall inlet demand at a WWTP. However, the extent of reduction achieved depends on the level of ammonium and flow-rate in the side stream. The exchange efficiency of the ion-exchange material, MesoLite, used in the ammonium recovery process deteriorates with long-term use due to mechanical degradation and use of regenerant. To ensure that a sustainable process is utilised a range of potential applications for this “spent” MesoLite have been evaluated. The primary focus of evaluations has been use of ammonium-loaded MesoLite as a source of nitrogen and growth medium for plants. A MesoLite fertiliser has advantage over soluble fertilisers in that N is held on an insoluble matrix and is gradually released according to exchange equilibria. Many conventional N fertilisers are water-soluble and thus, instantly release all applied N into the soil solution. Loss of nutrient commonly occurs through volatilisation and/or leaching. On average, up to half of the N delivered by a typical soluble fertiliser can be lost through these processes. In this context, use of ammonium-loaded MesoLite as a fertiliser has been evaluated using standard greenhouse and field-based experiments for low fertility soils. Rye grass, a suitable test species for greenhouse trials, was grown in 1kg pots over a period of several weeks with regular irrigation. Nitrogen was applied at a range of rates using a chemical fertiliser as a control and using two MesoLite fertilisers. All other nutrients were applied in adequate amounts. All treatments were replicated three times. Plants were harvested after four weeks, and dry plant mass and N concentrations were determined. At all nitrogen application rates, ammonium-loaded MesoLite produced higher plant mass than plants fertilised by the chemical fertiliser. The lower fertiliser effectiveness of the chemical fertliser is attributed to possible loss of some N through volatilisation. The MesoLite fertilisers did not show any adverse effect on availability of macro and trace nutrients, as shown by lack of deficiency symptoms, dry matter yield and plant analyses. Nitrogen loaded on to MesoLite in the form of exchanged ammonium is readily available to plants while remaining protected from losses via leaching and volatilisation. Spent MesoLite appears to be a suitable and effective fertiliser for a wide range of soils, particularly sandy soils with poor nutrient holding capacity.
Resumo:
Sandy soils have low nutrient holding capacity and high water conductivity. Consequently, nutrients applied as highly soluble chemical fertilisers are prone to leaching, particularly in heavily irrigated environments such as horticultural soils and golf courses. Amorphous derivatives of kaolin with high cation exchange capacity may be loaded with desired nutrients and applied as controlledrelease fertilisers. Kaolin is an abundant mineral, which can be converted to a meso-porous amorphous derivative (KAD) using facile chemical processes. KAD is currently being used to sequester ammonium from digester effluent in sewage treatment plants in a commercial environment. This material is also known in Australia by the trade name MesoLite. The ammonium-saturated form of KAD may be applied to soils as a nitrogen fertiliser. Up to 7% N can be loaded onto KAD by contacting it with high-ammonia concentration wastewater from sewerage treatment plants. This poster paper demonstrates plant uptake of nitrogen from KAD and compares its efficiency as a fertiliser with NH4SO4. Rye grass was grown in 1kg pots in a glass-house. Nitrogen was applied at a range of rates using NH4SO4 and two KAD materials carrying 7% and 3% nitrogen, respectively. All other nutrients were applied in adequate amounts. All treatments were replicated three times. Plants were harvested after four weeks. Dry mass and N concentrations were determined by standard methods. At all N application rates, ammonium-loaded KAD produced significantly higher plant mass than for NH4SO4. The lower fertiliser effectiveness of NH4SO4 is attributed to possible loss of some N through volatilisation. Of the two KAD types, the material with lower CEC value supported slightly higher plant yields. The KAD materials did not show any adverse effect on availability of trace elements, as evidenced by lack of deficiency symptoms and plant analyses. Clearly, nitrogen loaded on to KAD in the form of ammonium is likely to be protected from leaching, but is still available to plants. These data suggest that KAD-based fertilisers may be suitable substitutes for water soluble N, K and other cation fertilisers for leaching soils.
Resumo:
Introducing nitrogen (N)-fixing legumes into cereal-based crop rotations reduces synthetic fertiliser-N use and may mitigate soil emissions of nitrous oxide (N2O). Current IPCC calculations assume 100% of legume biomass N as the anthropogenic N input and use 1% of this as an emission factor (EF)—the percentage of input N emitted as N2O. However, legumes also utilise soil inorganic N, so legume-fixed N is typically less than 100% of legume biomass N. In two field experiments, we measured soil N2O emissions from a black Vertosol in sub-tropical Australia for 12 months after sowing of chickpea (Cicer arietinum L.), canola (Brassica napus L.), faba bean (Vicia faba L.), and field pea (Pisum sativum L.). Cumulative N2O emissions from N-fertilised canola (624 g N2O-N ha−1) greatly exceeded those from chickpea (127 g N2O-N ha−1) in Experiment 1. Similarly, N2O emitted from canola (385 g N2O-N ha−1) in Experiment 2 was significantly greater than chickpea (166 g N2O-N ha−1), faba bean (166 g N2O-N ha−1) or field pea (135 g N2O-N ha−1). Highest losses from canola were recorded during the growing season, whereas 75% of the annual N2O losses from the legumes occurred post-harvest. Legume N2-fixation provided 37–43% (chickpea), 54% (field pea) and 64% (faba bean) of total plant biomass N. Using only fixed-N inputs, we calculated EFs for chickpea (0.13–0.31%), field pea (0.18%) and faba bean (0.04%) that were significantly less than N-fertilised canola (0.48–0.78%) (P < 0.05), suggesting legume-fixed N is a less emissive form of N input to the soil than fertiliser N. Inputs of legume-fixed N should be more accurately quantified to properly gauge the potential for legumes to mitigate soil N2O emissions. EF’s from legume crops need to be revised and should include a factor for the proportion of the legume’s N derived from the atmosphere.
Resumo:
We investigated the effect of maize residues and rice husk biochar on biomass production, fertiliser nitrogen recovery (FNR) and nitrous oxide (N2O) emissions for three different subtropical cropping soils. Maize residues at two rates (0 and 10 t ha−1) combined with three rates (0, 15 and 30 t ha-1) of rice husk biochar were added to three soil types in a pot trial with maize plants. Soil N2O emissions were monitored with static chambers for 91 days. Isotopic 15N-labelled urea was applied to the treatments without added crop residues to measure the FNR. Crop residue incorporation significantly reduced N uptake in all treatments but did not affect overall FNR. Rice husk biochar amendment had no effect on plant growth and N uptake but significantly reduced N2O and carbon dioxide (CO2) emissions in two of the three soils. The incorporation of crop residues had a contrasting effect on soil N2O emissions depending on the mineral N status of the soil. The study shows that effects of crop residues depend on soil properties at the time of application. Adding crop residues with a high C/N ratio to soil can immobilise N in the soil profile and hence reduce N uptake and/or total biomass production. Crop residue incorporation can either stimulate or reduce N2O emissions depending on the mineral N content of the soil. Crop residues pyrolysed to biochar can potentially stabilise native soil C (negative priming) and reduce N2O emissions from cropping soils thus providing climate change mitigation potential beyond the biochar C storage in soils. Incorporation of crop residues as an approach to recycle organic materials and reduce synthetic N fertiliser use in agricultural production requires a thorough evaluation, both in terms of biomass production and greenhouse gas emissions.
Error, Bias, and Long-Branch Attraction in Data for Two Chloroplast Photosystem Genes in Seed Plants
Resumo:
Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus third positions. In the former, both genes agreed on a monophyletic gymnosperms, with Gnetales closely related to certain conifers. In the latter, Gnetales are inferred to be the sister group of all other seed plants, with gymnosperms paraphyletic. None of the data supported the modern ‘‘anthophyte hypothesis,’’ which places Gnetales as the sister group of flowering plants. A series of simulation studies were undertaken to examine the error rate for parsimony inference. Three kinds of errors were examined: random error, systematic bias (both properties of finite data sets), and statistical inconsistency owing to long-branch attraction (an asymptotic property). Parsimony reconstructions were extremely biased for third-position data for psbB. Regardless of the true underlying tree, a tree in which Gnetales are sister to all other seed plants was likely to be reconstructed for these data. None of the combinations of genes or partitions permits the anthophyte tree to be reconstructed with high probability. Simulations of progressively larger data sets indicate the existence of long-branch attraction (statistical inconsistency) for third-position psbB data if either the anthophyte tree or the gymnosperm tree is correct. This is also true for the anthophyte tree using either psaA third positions or psbB first and second positions. A factor contributing to bias and inconsistency is extremely short branches at the base of the seed plant radiation, coupled with extremely high rates in Gnetales and nonseed plant outgroups. M. J. Sanderson,* M. F. Wojciechowski,*† J.-M. Hu,* T. Sher Khan,* and S. G. Brady
Resumo:
Plants have been identified as promising expression systems for the commercial production of recombinant proteins. Plant-based protein production or “biofarming” offers a number of advantages over traditional expression systems in terms of scale of production, the capacity for post-translation processing, providing a product free of contaminants and cost effectiveness. A number of pharmaceutically important and commercially valuable proteins, such as antibodies, biopharmaceuticals and industrial enzymes are currently being produced in plant expression systems. However, several challenges still remain to improve recombinant protein yield with no ill effect on the host plant. The ability for transgenic plants to produce foreign proteins at commercially viable levels can be directly related to the level and cell specificity of the selected promoter driving the transgene. The accumulation of recombinant proteins may be controlled by a tissue-specific, developmentally-regulated or chemically-inducible promoter such that expression of recombinant proteins can be spatially- or temporally- controlled. The strict control of gene expression is particularly useful for proteins that are considered toxic and whose expression is likely to have a detrimental effect on plant growth. To date, the most commonly used promoter in plant biotechnology is the cauliflower mosaic virus (CaMV) 35S promoter which is used to drive strong, constitutive transgene expression in most organs of transgenic plants. Of particular interest to researchers in the Centre for Tropical Crops and Biocommodities at QUT are tissue-specific promoters for the accumulation of foreign proteins in the roots, seeds and fruit of various plant species, including tobacco, banana and sugarcane. Therefore this Masters project aimed to isolate and characterise root- and seed-specific promoters for the control of genes encoding recombinant proteins in plant-based expression systems. Additionally, the effects of matching cognate terminators with their respective gene promoters were assessed. The Arabidopsis root promoters ARSK1 and EIR1 were selected from the literature based on their reported limited root expression profiles. Both promoters were analysed using the PlantCARE database to identify putative motifs or cis-acting elements that may be associated with this activity. A number of motifs were identified in the ARSK1 promoter region including, WUN (wound-inducible), MBS (MYB binding site), Skn-1, and a RY core element (seed-specific) and in the EIR1 promoter region including, Skn-1 (seed-specific), Box-W1 (fungal elicitor), Aux-RR core (auxin response) and ABRE (ABA response). However, no previously reported root-specific cis-acting elements were observed in either promoter region. To confirm root specificity, both promoters, and truncated versions, were fused to the GUS reporter gene and the expression cassette introduced into Arabidopsis via Agrobacterium-mediated transformation. Despite the reported tissue-specific nature of these promoters, both upstream regulatory regions directed constitutive GUS expression in all transgenic plants. Further, similar levels of GUS expression from the ARSK1 promoter were directed by the control CaMV 35S promoter. The truncated version of the EIR1 promoter (1.2 Kb) showed some differences in the level of GUS expression compared to the 2.2 Kb promoter. Therefore, this suggests an enhancer element is contained in the 2.2 Kb upstream region that increases transgene expression. The Arabidopsis seed-specific genes ATS1 and ATS3 were selected from the literature based on their seed-specific expression profiles and gene expression confirmed in this study as seed-specific by RT-PCR analysis. The selected promoter regions were analysed using the PlantCARE database in order to identify any putative cis elements. The seed-specific motifs GCN4 and Skn-1 were identified in both promoter regions that are associated with elevated expression levels in the endosperm. Additionaly, the seed-specific RY element and the ABRE were located in the ATS1 promoter. Both promoters were fused to the GUS reporter gene and used to transform Arabidopsis plants. GUS expression from the putative promoters was consitutive in all transgenic Arabidopsis tissue tested. Importantly, the positive control FAE1 seed-specific promoter also directed constitutive GUS expression throughout transgenic Arabidopsis plants. The constitutive nature seen in all of the promoters used in this study was not anticipated. While variations in promoter activity can be caused by a number of influencing factors, the variation in promoter activity observed here would imply a major contributing factor common to all plant expression cassettes tested. All promoter constructs generated in this study were based on the binary vector pCAMBIA2300. This vector contains the plant selection gene (NPTII) under the transcriptional control of the duplicated CaMV 35S promoter. This CaMV 35S promoter contains two enhancer domains that confer strong, constitutive expression of the selection gene and is located immediately upstream of the promoter-GUS fusion. During the course of this project, Yoo et al. (2005) reported that transgene expression is significantly affected when the expression cassette is located on the same T-DNA as the 35S enhancer. It was concluded, the trans-acting effects of the enhancer activate and control transgene expression causing irregular expression patterns. This phenomenon seems the most plausible reason for the constitutive expression profiles observed with the root- and seed-specific promoters assessed in this study. The expression from some promoters can be influenced by their cognate terminator sequences. Therefore, the Arabidopsis ARSK1, EIR1, ATS1 and ATS3 terminator sequences were isolated and incorporated into expression cassettes containing the GUS reporter gene under the control of their cognate promoters. Again, unrestricted GUS activity was displayed throughout transgenic plants transformed with these reporter gene fusions. As previously discussed constitutive GUS expression was most likely due to the trans-acting effect of the upstream CaMV 35S promoter in the selection cassette located on the same T-DNA. The results obtained in this study make it impossible to assess the influence matching terminators with their cognate promoters have on transgene expression profiles. The obvious future direction of research continuing from this study would be to transform pBIN-based promoter-GUS fusions (ie. constructs containing no CaMV 35S promoter driving the plant selection gene) into Arabidopsis in order to determine the true tissue specificity of these promoters and evaluate the effects of their cognate 3’ terminator sequences. Further, promoter truncations based around the cis-elements identified here may assist in determining whether these motifs are in fact involved in the overall activity of the promoter.
Resumo:
Polymer microspheres loaded with bioactive particles, biomolecules, proteins, and/or growth factors play important roles in tissue engineering, drug delivery, and cell therapy. The conventional double emulsion method and a new method of electrospraying into liquid nitrogen were used to prepare bovine serum albumin (BAS)-loaded poly(lactic-co-glycolic acid) (PLGA) porous microspheres. The particle size, the surface morphology and the internal porous structure of the microspheres were observed using scanning electron microscopy (SEM). The loading efficiency, the encapsulation efficiency, and the release profile of the BSA-loaded PLGA microspheres were measured and studied. It was shown that the microspheres from double emulsion had smaller particle sizes (3-50 m), a less porous structure, a poor loading efficiency (5.2 %), and a poor encapsulation efficiency (43.5%). However, the microspheres from the electrospraying into liquid nitrogen had larger particle sizes (400-600 m), a highly porous structure, a high loading efficiency (12.2%), and a high encapsulation efficiency (93.8%). Thus the combination of electrospraying with freezing in liquid nitrogen and subsequent freeze drying represented a suitable way to produce polymer microspheres for effective loading and sustained release of proteins.