202 resultados para NEAR MISS NEONATAL MORBIDITY
em Queensland University of Technology - ePrints Archive
Resumo:
Recent modelling of socio-economic costs by the Australian railway industry in 2010 has estimated the cost of level crossing accidents to exceed AU$116 million annually. To better understand causal factors that contribute to these accidents, the Cooperative Research Centre for Rail Innovation is running a project entitled Baseline Level Crossing Video. The project aims to improve the recording of level crossing safety data by developing an intelligent system capable of detecting near-miss incidents and capturing quantitative data around these incidents. To detect near-miss events at railway level crossings a video analytics module is being developed to analyse video footage obtained from forward-facing cameras installed on trains. This paper presents a vision base approach for the detection of these near-miss events. The video analytics module is comprised of object detectors and a rail detection algorithm, allowing the distance between a detected object and the rail to be determined. An existing publicly available Histograms of Oriented Gradients (HOG) based object detector algorithm is used to detect various types of vehicles in each video frame. As vehicles are usually seen from a sideway view from the cabin’s perspective, the results of the vehicle detector are verified using an algorithm that can detect the wheels of each detected vehicle. Rail detection is facilitated using a projective transformation of the video, such that the forward-facing view becomes a bird’s eye view. Line Segment Detector is employed as the feature extractor and a sliding window approach is developed to track a pair of rails. Localisation of the vehicles is done by projecting the results of the vehicle and rail detectors on the ground plane allowing the distance between the vehicle and rail to be calculated. The resultant vehicle positions and distance are logged to a database for further analysis. We present preliminary results regarding the performance of a prototype video analytics module on a data set of videos containing more than 30 different railway level crossings. The video data is captured from a journey of a train that has passed through these level crossings.
Resumo:
Recent modelling of socio-economic costs by the Australian railway industry in 2010 has estimated the cost of level crossing accidents to exceed AU$116 million annually. To better understand the causal factors of these accidents, a video analytics application is being developed to automatically detect near-miss incidents using forward facing videos from trains. As near-miss events occur more frequently than collisions, by detecting these occurrences there will be more safety data available for analysis. The application that is being developed will improve the objectivity of near-miss reporting by providing quantitative data about the position of vehicles at level crossings through the automatic analysis of video footage. In this paper we present a novel method for detecting near-miss occurrences at railway level crossings from video data of trains. Our system detects and localizes vehicles at railway level crossings. It also detects the position of railways to calculate the distance of the detected vehicles to the railway centerline. The system logs the information about the position of the vehicles and railway centerline into a database for further analysis by the safety data recording and analysis system, to determine whether or not the event is a near-miss. We present preliminary results of our system on a dataset of videos taken from a train that passed through 14 railway level crossings. We demonstrate the robustness of our system by showing the results of our system on day and night videos.
Resumo:
Even though crashes between trains and road users are rare events at railway level crossings, they are one of the major safety concerns for the Australian railway industry. Nearmiss events at level crossings occur more frequently, and can provide more information about factors leading to level crossing incidents. In this paper we introduce a video analytic approach for automatically detecting and localizing vehicles from cameras mounted on trains for detecting near-miss events. To detect and localize vehicles at level crossings we extract patches from an image and classify each patch for detecting vehicles. We developed a region proposals algorithm for generating patches, and we use a Convolutional Neural Network (CNN) for classifying each patch. To localize vehicles in images we combine the patches that are classified as vehicles according to their CNN scores and positions. We compared our system with the Deformable Part Models (DPM) and Regions with CNN features (R-CNN) object detectors. Experimental results on a railway dataset show that the recall rate of our proposed system is 29% higher than what can be achieved with DPM or R-CNN detectors.
Resumo:
On the road, near collision events (also close calls or near-miss incidents) largely outnumber actual crashes, yet most of them can never be recorded by current traffic data collection technologies or crashes analysis tools. The analysis of near collisions data is an important step in the process of reducing the crash rate. There have been several studies that have investigated near collisions; to our knowledge, this is the first study that uses the functionalities provided by cooperative vehicles to collect near misses information. We use the VISSIM traffic simulator and a custom C++ engine to simulate cooperative vehicles and their ability to detect near collision events. Our results showed that, within a simple simulated environment, adequate information on near collision events can be collected using the functionalities of cooperative perception systems. The relationship between the ratio of detected events and the ratio of equipped vehicle was shown to closely follow a squared law, and the largest source of nondetection was packet loss instead of packet delays and GPS imprecision.
Resumo:
Purpose - The purpose of this paper is to explore the perceptions of near-misses and mistakes among new graduate occupational therapists from Australia and Aotearoa/New Zealand (NZ), and their knowledge of current incident reporting systems. Design/methodology/approach - New graduate occupational therapists in Australia and Aotearoa/NZ in their first year of practice (n=228) participated in an online electronic survey that examined five areas of work preparedness. Near-misses and mistakes was one focus area. Findings - The occurrence and disclosure of practice errors among new graduate occupational therapists are similar between Australian and Aotearoa/NZ participants. Rural location, structured supervision and registration status significantly influenced the perceptions and reporting of practice errors. Structured supervision significantly impacted on reporting procedure knowledge. Current registration status was strongly correlated with perceptions that the workplace encouraged event reporting. Research limitations/ implications - Areas for further investigation include investigating the perceptions and knowledge of practice errors within a broader profession and the need to explore definitional aspects and contextual factors of adverse events that occur in allied health settings. Selection bias may be a factor in this study. Practical implications - Findings have implications for university and workplace structures, such as clinical management, supervision, training about practice errors and reporting mechanisms in allied health. Originality/value - Findings may enable the development of better strategies for detecting, managing and preventing practice errors in the allied health professions.
Resumo:
Background: The proportion of older individuals in the driving population is predicted to increase in the next 50 years. This has important implications for driving safety as abilities which are important for safe driving, such as vision (which accounts for the majority of the sensory input required for driving), processing ability and cognition have been shown to decline with age. The current methods employed for screening older drivers upon re-licensure are also vision based. This study, which investigated social, behavioural and professional aspects involved with older drivers, aimed to determine: (i) if the current visual standards in place for testing upon re-licensure are effective in reducing the older driver fatality rate in Australia; (ii) if the recommended visual standards are actually implemented as part of the testing procedures by Australian optometrists; and (iii) if there are other non-standardised tests which may be better at predicting the on-road incident-risk (including near misses and minor incidents) in older drivers than those tests recommended in the standards. Methods: For the first phase of the study, state-based age- and gender-stratified numbers of older driver fatalities for 2000-2003 were obtained from the Australian Transportation Safety Bureau database. Poisson regression analyses of fatality rates were considered by renewal frequency and jurisdiction (as separate models), adjusting for possible confounding variables of age, gender and year. For the second phase, all practising optometrists in Australia were surveyed on the vision tests they conduct in consultations relating to driving and their knowledge of vision requirements for older drivers. Finally, for the third phase of the study to investigate determinants of on-road incident risk, a stratified random sample of 600 Brisbane residents aged 60 years and were selected and invited to participate using an introductory letter explaining the project requirements. In order to capture the number and type of road incidents which occurred for each participant over 12 months (including near misses and minor incidents), an important component of the prospective research study was the development and validation of a driving diary. The diary was a tool in which incidents that occurred could be logged at that time (or very close in time to which they occurred) and thus, in comparison with relying on participant memory over time, recall bias of incident occurrence was minimised. Association between all visual tests, cognition and scores obtained for non-standard functional tests with retrospective and prospective incident occurrence was investigated. Results: In the first phase,rivers aged 60-69 years had a 33% lower fatality risk (Rate Ratio [RR] = 0.75, 95% CI 0.32-1.77) in states with vision testing upon re-licensure compared with states with no vision testing upon re-licensure, however, because the CIs are wide, crossing 1.00, this result should be regarded with caution. However, overall fatality rates and fatality rates for those aged 70 years and older (RR=1.17, CI 0.64-2.13) did not differ between states with and without license renewal procedures, indicating no apparent benefit in vision testing legislation. For the second phase of the study, nearly all optometrists measured visual acuity (VA) as part of a vision assessment for re-licensing, however, 20% of optometrists did not perform any visual field (VF) testing and only 20% routinely performed automated VF on older drivers, despite the standards for licensing advocating automated VF as part of the vision standard. This demonstrates the need for more effective communication between the policy makers and those responsible for carrying out the standards. It may also indicate that the overall higher driver fatality rate in jurisdictions with vision testing requirements is resultant as the tests recommended by the standards are only partially being conducted by optometrists. Hence a standardised protocol for the screening of older drivers for re-licensure across the nation must be established. The opinions of Australian optometrists with regard to the responsibility of reporting older drivers who fail to meet the licensing standards highlighted the conflict between maintaining patient confidentiality or upholding public safety. Mandatory reporting requirements of those drivers who fail to reach the standards necessary for driving would minimise potential conflict between the patient and their practitioner, and help maintain patient trust and goodwill. The final phase of the PhD program investigated the efficacy of vision, functional and cognitive tests to discriminate between at-risk and safe older drivers. Nearly 80% of the participants experienced an incident of some form over the prospective 12 months, with the total incident rate being 4.65/10 000 km. Sixty-three percent reported having a near miss and 28% had a minor incident. The results from the prospective diary study indicate that the current vision screening tests (VA and VF) used for re-licensure do not accurately predict older drivers who are at increased odds of having an on-road incident. However, the variation in visual measurements of the cohort was narrow, also affecting the results seen with the visual functon questionnaires. Hence a larger cohort with greater variability should be considered for a future study. A slightly lower cognitive level (as measured with the Mini-Mental State Examination [MMSE]) did show an association with incident involvement as did slower reaction time (RT), however the Useful-Field-of-View (UFOV) provided the most compelling results of the study. Cut-off values of UFOV processing (>23.3ms), divided attention (>113ms), selective attention (>258ms) and overall score (moderate/ high/ very high risk) were effective in determining older drivers at increased odds of having any on-road incident and the occurrence of minor incidents. Discussion: The results have shown that for the 60-69 year age-group, there is a potential benefit in testing vision upon licence renewal. However, overall fatality rates and fatality rates for those aged 70 years and older indicated no benefit in vision testing legislation and suggests a need for inclusion of screening tests which better predict on-road incidents. Although VA is routinely performed by Australian optometrists on older drivers renewing their licence, VF is not. Therefore there is a need for a protocol to be developed and administered which would result in standardised methods conducted throughout the nation for the screening of older drivers upon re-licensure. Communication between the community, policy makers and those conducting the protocol should be maximised. By implementing a standardised screening protocol which incorporates a level of mandatory reporting by the practitioner, the ethical dilemma of breaching patient confidentiality would also be resolved. The tests which should be included in this screening protocol, however, cannot solely be ones which have been implemented in the past. In this investigation, RT, MMSE and UFOV were shown to be better determinants of on-road incidents in older drivers than VA and VF, however, as previously mentioned, there was a lack of variability in visual status within the cohort. Nevertheless, it is the recommendation from this investigation, that subject to appropriate sensitivity and specificity being demonstrated in the future using a cohort with wider variation in vision, functional performance and cognition, these tests of cognition and information processing should be added to the current protocol for the screening of older drivers which may be conducted at licensing centres across the nation.
Resumo:
There is consistent evidence showing that driver behaviour contributes to crashes and near miss incidents at railway level crossings (RLXs). The development of emerging Vehicle-to-Vehicle and Vehicle-to-Infrastructure technologies is a highly promising approach to improve RLX safety. To date, research has not evaluated comprehensively the potential effects of such technologies on driving behaviour at RLXs. This paper presents an on-going research programme assessing the impacts of such new technologies on human factors and drivers’ situational awareness at RLX. Additionally, requirements for the design of such promising technologies and ways to display safety information to drivers were systematically reviewed. Finally, a methodology which comprehensively assesses the effects of in-vehicle and road-based interventions warning the driver of incoming trains at RLXs is discussed, with a focus on both benefits and potential negative behavioural adaptations. The methodology is designed for implementation in a driving simulator and covers compliance, control of the vehicle, distraction, mental workload and drivers’ acceptance. This study has the potential to provide a broad understanding of the effects of deploying new in-vehicle and road-based technologies at RLXs and hence inform policy makers on safety improvements planning for RLX.
Resumo:
Traffic safety studies mandate more than what existing micro-simulation models can offer as they postulate that every driver exhibits a safe behaviour. All the microscopic traffic simulation models are consisting of a car-following model and the Gazis–Herman–Rothery (GHR) car-following model is a widely used model. This paper highlights the limitations of the GHR car-following model capability to model longitudinal driving behaviour for safety study purposes. This study reviews and compares different version of the GHR model. To empower the GHR model on precise metrics reproduction a new set of car-following model parameters is offered to simulate unsafe vehicle conflicts. NGSIM vehicle trajectory data is used to evaluate the new model and short following headways and Time to Collision are employed to assess critical safety events within traffic flow. Risky events are extracted from available NGSIM data to evaluate the modified model against the generic versions of the GHR model. The results from simulation tests illustrate that the proposed model does predict the safety metrics better than the generic GHR model. Additionally it can potentially facilitate assessing and predicting traffic facilities’ safety using microscopic simulation. The new model can predict Near-miss rear-end crashes.
Resumo:
Background: Preterm birth is a major cause of neonatal morbidity and mortality, with 75% of preterm births occurring late preterm. Previous studies have investigated the microbial diversity within placentas delivered early preterm but there has been no investigation of the prevalence of bacteria, particularly Ureaplasma spp. in late preterm placentas. Method: Women giving birth late preterm (320 – 366 weeks of gestation) in Cincinnati were recruited for this study. Samples of chorioamnion were collected aseptically at the time of delivery, shipped to QUT and tested for Ureaplasma spp. and other bacteria by culture and/or PCR assays. The presence of bacteria was correlated with adverse pregnancy outcomes, including histological chorioamnionitis (tissue sections read by US pathologists). Results: To date, Ureaplasma spp. have been detected in 15/270 (5.5%) of placentas by culture and 19/270 (7%) by PCR. Ureaplasma presence correlated with histological chorioamnionitis (12/19%; 63%). However, the presence of other bacteria was not associated with chorioamnionitis (5%). Chorioamnionitis was unevenly distributed in ethnic groups, with a higher incidence in African-Americans’ (6/7; 86%), compared to Caucasians’ (6/12; 50%) who were colonised with ureaplasmas. Conclusion: This study is the first to report the prevalence of ureaplasmas in women (7%) who deliver late preterm. Ureaplasma spp. were associated with a higher incidence of chorioamnionitis (63% compared to 15% for non-infected women). This data strongly suggests that ureaplasmas are a cause of late preterm deliveries and African-American women are at greater risk of chorioamnionitis.
Resumo:
ABSTRACT Objective: Ureaplasma parvum colonization in the setting of polymicrobial flora is common in women with chorioamnionitis, and is a risk factor for preterm delivery and neonatal morbidity. We hypothesized that ureaplasma colonization of amniotic fluid will modulate chorioamnionitis induced by E.coli lipopolysaccharide (LPS). Methods: Sheep received intra-amniotic (IA) injections of media (control) or live ureaplasma either 7 or 70d before delivery. Another group received IA LPS 2d before delivery. To test for interactions, U.parvum exposed animals were challenged with IA LPS, and delivered 2d later. All animals were delivered preterm at 125±1 day gestation. Results: Both IA ureaplasmas and LPS induced leukocyte infiltration of chorioamnion. LPS greatly increased the expression of pro-inflammatory cytokines and myeloperoxidase in leukocytes, while ureaplasmas alone caused modest responses. Interestingly, 7d but not 70d ureaplasma exposure significantly downregulated LPS induced pro-inflammatory cytokines and myeloperoxidase expression in the chorioamnion. Conclusion: U.parvum can suppress LPS induced experimental chorioamnionitis.
Resumo:
A range of authors from the risk management, crisis management, and crisis communications literature have proposed different models as a means of understanding components of crisis. A generic component of these sources has focused on preparedness practices before disturbance events and response practices during events. This paper provides a critical analysis of three key explanatory models of how crises escalate highlighting the strengths and limitations of each approach. The paper introduces an optimised conceptual model utilising components from the previous work under the four phases of pre-event, response, recovery, and post-event. Within these four phases, a ten step process is introduced that can enhance understanding of the progression of distinct stages of disturbance for different types of events. This crisis evolution framework is examined as a means to provide clarity and applicability to a range of infrastructure failure contexts and provide a path for further empirical investigation in this area.
Resumo:
This paper describes the work being conducted in the baseline rail level crossing project, supported by the Australian rail industry and the Cooperative Research Centre for Rail Innovation. The paper discusses the limitations of near-miss data for analysis obtained using current level crossing occurrence reporting practices. The project is addressing these limitations through the development of a data collection and analysis system with an underlying level crossing accident causation model. An overview of the methodology and improved data recording process are described. The paper concludes with a brief discussion of benefits this project is expected to provide the Australian rail industry.
Resumo:
Recent road safety statistics show that the decades-long fatalities decreasing trend is stopping and stagnating. Statistics further show that crashes are mostly driven by human error, compared to other factors such as environmental conditions and mechanical defects. Within human error, the dominant error source is perceptive errors, which represent about 50% of the total. The next two sources are interpretation and evaluation, which accounts together with perception for more than 75% of human error related crashes. Those statistics show that allowing drivers to perceive and understand their environment better, or supplement them when they are clearly at fault, is a solution to a good assessment of road risk, and, as a consequence, further decreasing fatalities. To answer this problem, currently deployed driving assistance systems combine more and more information from diverse sources (sensors) to enhance the driver's perception of their environment. However, because of inherent limitations in range and field of view, these systems' perception of their environment remains largely limited to a small interest zone around a single vehicle. Such limitations can be overcomed by increasing the interest zone through a cooperative process. Cooperative Systems (CS), a specific subset of Intelligent Transportation Systems (ITS), aim at compensating for local systems' limitations by associating embedded information technology and intervehicular communication technology (IVC). With CS, information sources are not limited to a single vehicle anymore. From this distribution arises the concept of extended or augmented perception. Augmented perception allows extending an actor's perceptive horizon beyond its "natural" limits not only by fusing information from multiple in-vehicle sensors but also information obtained from remote sensors. The end result of an augmented perception and data fusion chain is known as an augmented map. It is a repository where any relevant information about objects in the environment, and the environment itself, can be stored in a layered architecture. This thesis aims at demonstrating that augmented perception has better performance than noncooperative approaches, and that it can be used to successfully identify road risk. We found it was necessary to evaluate the performance of augmented perception, in order to obtain a better knowledge on their limitations. Indeed, while many promising results have already been obtained, the feasibility of building an augmented map from exchanged local perception information and, then, using this information beneficially for road users, has not been thoroughly assessed yet. The limitations of augmented perception, and underlying technologies, have not be thoroughly assessed yet. Most notably, many questions remain unanswered as to the IVC performance and their ability to deliver appropriate quality of service to support life-saving critical systems. This is especially true as the road environment is a complex, highly variable setting where many sources of imperfections and errors exist, not only limited to IVC. We provide at first a discussion on these limitations and a performance model built to incorporate them, created from empirical data collected on test tracks. Our results are more pessimistic than existing literature, suggesting IVC limitations have been underestimated. Then, we develop a new CS-applications simulation architecture. This architecture is used to obtain new results on the safety benefits of a cooperative safety application (EEBL), and then to support further study on augmented perception. At first, we confirm earlier results in terms of crashes numbers decrease, but raise doubts on benefits in terms of crashes' severity. In the next step, we implement an augmented perception architecture tasked with creating an augmented map. Our approach is aimed at providing a generalist architecture that can use many different types of sensors to create the map, and which is not limited to any specific application. The data association problem is tackled with an MHT approach based on the Belief Theory. Then, augmented and single-vehicle perceptions are compared in a reference driving scenario for risk assessment,taking into account the IVC limitations obtained earlier; we show their impact on the augmented map's performance. Our results show that augmented perception performs better than non-cooperative approaches, allowing to almost tripling the advance warning time before a crash. IVC limitations appear to have no significant effect on the previous performance, although this might be valid only for our specific scenario. Eventually, we propose a new approach using augmented perception to identify road risk through a surrogate: near-miss events. A CS-based approach is designed and validated to detect near-miss events, and then compared to a non-cooperative approach based on vehicles equiped with local sensors only. The cooperative approach shows a significant improvement in the number of events that can be detected, especially at the higher rates of system's deployment.
Resumo:
Fatigue/sleepiness is recognised as an important contributory factor in fatal and serious injury road traffic incidents (RTIs), however, identifying fatigue/sleepiness as a causal factor remains an uncertain science. Within Australia attending police officers at a RTI report the causal factors; one option is fatigue/sleepiness. In some Australian jurisdictions police incident databases are subject to post hoc analysis using a proxy definition for fatigue/sleepiness. This secondary analysis identifies further RTIs caused by fatigue/sleepiness not initially identified by attending officers. The current study investigates the efficacy of such proxy definitions for attributing fatigue/sleepiness as a RTI causal factor. Over 1600 Australian drivers were surveyed regarding their experience and involvement in fatigue/sleep-related RTIs and near-misses during the past five years. Driving while fatigued/sleepy had been experienced by the majority of participants (66.0% of participants). Fatigue/sleep-related near misses were reported by 19.1% of participants, with 2.4% being involved in a fatigue/sleep-related RTI. Examination of the characteristics for the most recent event (either a near miss or crash) found that the largest proportion of incidents (28.0%) occurred when commuting to or from work, followed by social activities (25.1%), holiday travel (19.8%), or for work purposes (10.1%). The fatigue/sleep related RTI and near-miss experience of a representative sample of Australian drivers does not reflect the proxy definitions used for fatigue/sleepiness identification. In particular those RTIs that occur in urban areas and at slow speeds may not be identified. While important to have a strategy for identifying fatigue/sleepiness related RTIs proxy measures appear best suited to identifying specific subsets of such RTIs.
Resumo:
This paper describes a safety data recording and analysis system that has been developed to capture safety occurrences including precursors using high-definition forward-facing video from train cabs and data from other train-borne systems. The paper describes the data processing model and how events detected through data analysis are related to an underlying socio-technical model of accident causation. The integrated approach to safety data recording and analysis insures systemic factors that condition, influence or potentially contribute to an occurrence are captured both for safety occurrences and precursor events, providing a rich tapestry of antecedent causal factors that can significantly improve learning around accident causation. This can ultimately provide benefit to railways through the development of targeted and more effective countermeasures, better risk models and more effective use and prioritization of safety funds. Level crossing occurrences are a key focus in this paper with data analysis scenarios describing causal factors around near-miss occurrences. The paper concludes with a discussion on how the system can also be applied to other types of railway safety occurrences.