95 resultados para N-Acétyl-L-cystéine
em Queensland University of Technology - ePrints Archive
Resumo:
Lactobacillus reuteri BR11 possesses an abundant cystine uptake (Cyu) ABC-transporter that was previously found to be involved in a novel mechanism of oxidative defence mediated by cystine. The current study aimed to elucidate this mechanism with a focus on the role of the co-transcribed cystathionine ã-lyase (Cgl). Growth studies of wild-type L. reuteri BR11 and mutants inactivated in cgl and the cystine-binding protein encoding gene cyuC showed that in contrast to the Cyu transporter, whose inactivation led to growth arrest in aerated cultures, Cgl is not crucial for oxidative defence. However, the role of Cgl in oxidative defence became apparent in the presence of severe oxidative damage and cysteine deprivation. Cysteine was found to be protective against oxidative stress, and the action of Cgl in both cysteine biosynthesis and degradation poses a seemingly futile pathway that deprives the intracellular cysteine pool. To further characterise the relationship between Cgl activity and cysteine and their roles in oxidative defence, enzymatic assays were performed on purified Cgl, and intracellular concentrations of cysteine, cystathionine and methionine were determined. Cgl was highly active towards cystine and cystathionine and less active towards cysteine in vitro, suggesting the main function of Cgl to be cysteine biosynthesis. Cysteine was found at high concentrations in the cell, but the levels were not significantly affected by inactivation of cgl or growth under aerobic conditions. It was concluded that both anabolic and catabolic activities of Cgl towards cysteine contribute to oxidative defence, the former by maintaining an intracellular reservoir of thiol analogous to glutathione, and the latter by producing H2S which is readily secreted, thus creating a reducing extracellular environment. The significance of the Cyu transporter to the physiology of L. reuteri BR11 prompted a phylogenetic study to determine its presence in bacteria. Orthologs of the Cyu transporter that are closest matches to the Cyu transporter are only limited to several species of Lactobacillus and Leuconostoc. Outside the Lactobacillales order, the closest matching orthologs belong to Proteobacteria, and there are more orthologs in Proteobacteria than non-Lactobacillales Firmicutes, suggesting that the Cyu transporter locus was present in the ancestor of the Proteobacteria and Firmicutes, and over evolutionary time has been lost or diverged in many Firmicutes. The clustering of the Cyu transporter locus with a gene encoding a Cgl family protein is even rarer. It was only found in L. reuteri, Lactobacillus vaginalis, Weissella paramesenteroides, the Lactobacillus casei group, and several Campylobacter sp. An accompanying phylogenetic study of L. reuteri BR11 using multi-locus sequence analysis showed that L. reuteri BR11 had diverged from more than 100 strains of L. reuteri isolated from various hosts and geographical locations. However, comparison with other Lactobacillus species supported the current classification of BR11 as L. reuteri. The most closely related species to L. reuteri is L. vaginalis or Lactobacillus antri, depending on the housekeeping gene used for analysis. The close evolutionary relationship of L. vaginalis to L. reuteri and the high degree of sequence identity between the cgl-cyuABC loci in both species suggest that the Cyu system is highly likely to perform similar functions in L. vaginalis. In search of other genes that function in oxidative defence, a number of mutants which were inactivated in genes that confer increased resistance to oxidative stress in other bacteria were constructed. The genes targeted were ahpC (peroxidase component of the alkyl hydroperoxide reductase system), tpx (thiol peroxidase), osmC (osmotically induced protein C), mntH (Mn2+/Fe2+ transporter), gshA (ã-glutamylcysteine synthetase) and msrA (methionine sulfoxide reductase). The ahpC and mntH mutants had slightly lower minimum inhibitory concentrations of organic peroxides, suggesting these genes might be involved in resistance to organic peroxides in L. reuteri. However, none of the mutants exhibited growth defects in aerated cultures, in stark contrast to the cyuC mutant. This may be due to compensatory functions of other genes, a hypothesis which cannot be tested until a robust protocol for constructing markerless multiple gene deletion mutants in L. reuteri is developed. These results highlight the importance of the Cyu transporter in oxidative defence and provide a foundation for extending the research of this system in other bacteria.
Resumo:
Agent-oriented conceptual modelling (AoCM) approaches in Requirements Engineering (RE) have received considerable attention recently. Semi-formal modeling frameworks such as i* assist analysts in requirements elicitation and reasoning of early-phase RE. AgentSpeak(L) is a widely accepted agent programming language. The Strategic Rationale (SR) model of the i* framework naturally lends itself to AgentSpeak(L) programs. Furthermore, the Strategic Dependency (SD) component of the i* framework prescribes the interaction between the agents in a multi-agent environment. This paper proposes a formal methodology for transforming a SR model to an AgentS- peak(L) agent. The constructed AgentSpeak(L) agents will then form the essential components of a multi-agent system, MAS.
Resumo:
To enhance and regulate cell affinity for poly (l-lactic acid) (PLLA) based materials, two hydrophilic ligands, poly (ethylene glycol) (PEG) and poly (l-lysine) (PLL), were used to develop triblock copolymers: methoxy-terminated poly (ethylene glycol)-block-poly (l-lactide)-block-poly (l-lysine) (MPEG-b-PLLA-b-PLL) in order to regulate protein absorption and cell adhesion. Bone marrow stromal cells (BMSCs) were cultured on different composition of MPEG-b-PLLA-b-PLL copolymer films to determine the effect of modified polymer surfaces on BMSC attachment. To understand the molecular mechanism governing the initial cell adhesion on difference polymer surfaces, the mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analysed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). It was found that down regulation of adhesion molecules was responsible for the impaired BMSC attachment on PLLA surface. MPEG-b-PLLA-b-PLL copolymer films improved significantly the cell adhesion and cytoskeleton expression by upregulation of relevant molecule genes significantly. Six adhesion genes (CDH1, ITGL, NCAM1, SGCE, COL16A1, and LAMA3) were most significantly influenced by the modified PLLA surfaces. In summary, polymer surfaces altered adhesion molecule gene expression of BMSCs, which consequently regulated cell initial attachment on modified PLLA surfaces.
Synthesis of 4-arm star poly(L-Lactide) oligomers using an in situ-generated calcium-based initiator
Resumo:
Using an in situ-generated calcium-based initiating species derived from pentaerythritol, the bulk synthesis of well-defined 4-arm star poly(L-lactide) oligomers has been studied in detail. The substitution of the traditional initiator, stannous octoate with calcium hydride allowed the synthesis of oligomers that had both low PDIs and a comparable number of polymeric arms (3.7 – 3.9) to oligomers of similar molecular weight. Investigations into the degree of control observed during the course of the polymerization found that the insolubility of pentaerythritol in molten L-lactide resulted in an uncontrolled polymerization only when the feed mole ratio of L-lactide to pentaerythritol was 13. At feed ratios of 40 and greater, a pseudo-living polymerization was observed. As part of this study, in situ FT-Raman spectroscopy was demonstrated to be a suitable method to monitor the kinetics of the ring-opening polymerization (ROP) of lactide. The advantages of using this technique rather than FT-IR-ATR and 1H NMR for monitoring L-lactide consumption during polymerization are discussed.
Resumo:
De récentes recherches ont mis l’accent sur l’importance pour les nouvelles entreprises internationales de l’existence de ressources et de compétences spécifiques. La présente recherche, qui s’inscrit dans ce courant, montre en particulier l’importance du capital humain acquis par les entrepreneurs sur base de leur expérience internationale passée. Mais nous montrons en même temps que ces organisations sont soutenues par une intention délibérée d’internationalisation dès l’origine. Notre recherche empirique est basée sur l’analyse d’un échantillon de 466 nouvelles entreprises de hautes technologies anglaises et allemandes. Nous montrons que ce capital humain est un actif qui facilite la pénétration rapide des marchés étrangers, et plus encore quand l’entreprise nouvelle est accompagnée d’une intention stratégique délibérée d’internationalisation. Des conclusions similaires peuvent être étendues au niveau des ressources que l’entrepreneur consacre à la start-up : plus ces ressources sont importantes, plus le processus d’internationalisation tend à se faire à grande échelle ; et là aussi, l’influence de ces ressources est augmenté par l’intention stratégique d’internationalisation. Dans le cadre des études empiriques sur les born-globals (entreprises qui démarrent sur un marché globalisé), cette recherche fournit une des premières études empiriques reliant l’influence des conditions initiales de création aux probabilités de croissance internationale rapide.
Resumo:
The 1:1 proton-transfer compounds of L-tartaric acid with 3-aminopyridine [3-aminopyridinium hydrogen (2R,3R)-tartrate dihydrate, C5H7N2+·C4H5O6-·2H2O, (I)], pyridine-3-carboxylic acid (nicotinic acid) [anhydrous 3-carboxypyridinium hydrogen (2R,3R)-tartrate, C6H6NO2+·C4H5O6-, (II)] and pyridine-2-carboxylic acid [2-carboxypyridinium hydrogen (2R,3R)-tartrate monohydrate, C6H6NO2+·C4H5O6-·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium-carboxyl N+-HO hydrogen-bonding interaction, four-centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N-HO association in (III) is with a water O-atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head-to-tail C(7) hydrogen-bonded chain substructures commonly associated with 1:1 proton-transfer hydrogen tartrate salts. These chains are extended into two-dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three-dimensional hydrogen-bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O-atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl-carboxyl O-HO hydrogen bonds [OO = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter-sheet association. This series of heteroaromatic Lewis base-hydrogen L-tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two-dimensional hydrogen-bonded hydrogen tartrate or hydrogen tartrate-water sheet substructures which are expanded into three-dimensional frameworks via peripheral cation bifunctional substituent-group crosslinking interactions.
Resumo:
Poly(L-lactide-co-succinic anhydride) networks were synthesised via the carbodiimide-mediated coupling of poly(L-lactide) (PLLA) star polymers. When 4-(dimethylamino)pyridine (DMAP) alone was used as the catalyst gelation did not occur. However, when 4-(dimethylamino)pyridinium p-toluenesulfonate (DPTS), the salt of DMAP and p-toluenesulfonic acid (PTSA), was the catalyst, the networks obtained had gel fractions comparable to those which were reported for networks synthesised by conventional methods. Greater gel fractions and conversion of the prepolymer terminal hydroxyl groups were observed when the hydroxyl-terminated star prepolymers reacted with succinic anhydride in a one-pot procedure than when the hydroxyl-terminated star prepolymers reacted with presynthesised succinic-terminated star prepolymers. The thermal properties of the networks, glass transition temperature (Tg), melting temperature (Tm) and crystallinity (Xc) were all strongly influenced by the average molecular weights between the crosslinks ((M_c). The network with the smallest (M_c )(1400 g/mol) was amorphous and had a Tg of 59 °C while the network with the largest (M_c ) (7800 g/mol) was 15 % crystalline and had a Tg of 56 °C.
Resumo:
The structure of the 1:1 proton-transfer compound from the reaction of L-tartaric acid with the azo-dye precursor aniline yellow [4-(phenylazo)aniline], 4-(phenyldiazenyl)anilinium hydrogen 2R,3R-tartrate C12H12N3+ . C4H6O6- has been determined at 200 K. The asymmetric unit of the compound contains two independent phenylazoanilinium cations and two hydrogen L-tartrate anions. The structure is unusual in that all four phenyl rings of both cations have identical 50% rotational disorder. The two hydrogen L-tartrate anions form independent but similar chains through head-to-tail carboxylic O--H...O~carboxyl~ hydrogen bonds [graph set C7] which are then extended into a two-dimensional hydrogen-bonded sheet structure through hydroxyl O--H...O hydrogen-bonding links. The anilinium groups of the phenyldiazenyl cations are incorporated into the sheets and also provide internal hydrogen-bonding extensions while their aromatic tails layer in the structure without significant interaction except for weak \p--\p interactions [minimum ring centroid separation, 3.844(3) \%A]. The hydrogen L-tartrate residues of both anions have the common short intramolecular hydroxyl O--H...O~carboxyl~ hydogen bonds. This work has provided a solution to the unusual disorder problem inherent in the structure of this salt as well as giving another example of the utility of the hydrogen tartrate in the generation of sheet substructures in molecular assembly processes.