8 resultados para Museo Rath (Ginebra)
em Queensland University of Technology - ePrints Archive
Resumo:
This paper explores the potential therapeutic role of the naturally occurring sugar heparan sulfate (HS) for the augmentation of bone repair. Scaffolds comprising fibrin glue loaded with 5 lg of embryonically derived HS were assessed, firstly as a release-reservoir, and secondly as a scaffold to stimulate bone regeneration in a critical size rat cranial defect. We show HS-loaded scaffolds have a uniform distribution of HS, which was readily released with a typical burst phase, quickly followed by a prolonged delivery lasting several days. Importantly, the released HS contributed to improved wound healing over a 3-month period as determined by microcomputed tomography (lCT) scanning, histology, histomorphometry, and PCR for osteogenic markers. In all cases, only minimal healing was observed after 1 and 3 months in the absence of HS. In contrast, marked healing was observed by 3 months following HS treatment, with nearly full closure of the defect site. PCR analysis showed significant increases in the gene expression of the osteogenic markers Runx2, alkaline phosphatase, and osteopontin in the heparin sulfate group compared with controls. These results further emphasize the important role HS plays in augmenting wound healing, and its successful delivery in a hydrogel provides a novel alternative to autologous bone graft and growth factorbased therapies.
Resumo:
The osteogenic potential of human adipose-derived precursor cells seeded on medical-grade polycaprolactone-tricalcium phosphate scaffolds was investigated in this in vivo study. Three study groups were investigated: (1) induced—stimulated with osteogenic factors only after seeding into scaffold; (2) preinduced—induced for 2 weeks before seeding into scaffolds; and (3) uninduced—cells without any introduced induction. For all groups, scaffolds were implanted subcutaneously into the dorsum of athymic rats. The scaffold/cell constructs were harvested at the end of 6 or 12 weeks and analyzed for osteogenesis. Gross morphological examination using scanning electron microscopy indicated good integration of host tissue with scaffold/cell constructs and extensive tissue infiltration into the scaffold interior. Alizarin Red histology and immunostaining showed a heightened level of mineralization and an increase in osteonectin, osteopontin, and collagen type I protein expression in both the induced and preinduced groups compared with the uninduced groups. However, no significant differences were observed in these indicators when compared between the induced and preinduced groups.
Resumo:
Smart matrices are required in bone tissueengineered grafts that provide an optimal environment for cells and retain osteo-inductive factors for sustained biological activity. We hypothesized that a slow-degrading heparin-incorporated hyaluronan (HA) hydrogel can preserve BMP-2; while an arterio–venous (A–V) loop can support axial vascularization to provide nutrition for a bioartificial bone graft. HA was evaluated for osteoblast growth and BMP-2 release. Porous PLDLLA–TCP–PCL scaffolds were produced by rapid prototyping technology and applied in vivo along with HA-hydrogel, loaded with either primary osteoblasts or BMP-2. A microsurgically created A–V loop was placed around the scaffold, encased in an isolation chamber in Lewis rats. HA-hydrogel supported growth of osteoblasts over 8 weeks and allowed sustained release of BMP-2 over 35 days. The A–V loop provided an angiogenic stimulus with the formation of vascularized tissue in the scaffolds. Bone-specific genes were detected by real time RT-PCR after 8 weeks. However, no significant amount of bone was observed histologically. The heterotopic isolation chamber in combination with absent biomechanical stimulation might explain the insufficient bone formation despite adequate expression of bone-related genes. Optimization of the interplay of osteogenic cells and osteo-inductive factors might eventually generate sufficient amounts of axially vascularized bone grafts for reconstructive surgery.
Resumo:
Immigrant entrepreneurship, or, self-employment by immigrants (Light & Bonacich, 1988), has been of growing interest to researchers (Hosler, 1996). This is due in part to major immigrant receiving countries, such as Australia, the United States, Canada, the United Kingdom and Western Europe, experiencing a high growth rate in their immigrant populations, leading to a more visible presence of immigrant business in major cities (Woon, 2008). By starting their own businesses, immigrant entrepreneurs may circumvent some of the barriers and disadvantages encountered in looking for a job (Sequeira & Rasheed, 2006). Successful immigrant entrepreneurs will integrate into the economy by creating jobs, providing products and services for members of their own ethnic community and society, as well as introducing new products and services that expand consumers’ choices (Rath & Kloosterman, 2000). Immigrant entrepreneurs tend to start business within their ethnic enclave, as it is an integral part of their social and cultural context and the location where ethnic resources reside (Logan et al., 2002). An ethnic enclave is an interdependent network of social and business relationships that are geographically concentrated with its co-ethnic people (Portes & Bach, 1985).
Resumo:
Not many people will be instantly familiar with British woman Dale Sheppard-Floyd, but – at least symbolically – she represents a significant milestone in the development of travel and tourism. In fact, the milestone was so significant that the United Nations World Tourism Organization booked Madrid’s venerable Museo del Prado to announce to the world’s media her visit to Spain on 13 December 2012. For Ms Sheppard-Floyd’s arrival for a three-day trip meant that more than one billion times in that year, someone had crossed a border as a tourist. An astounding number, considering that, in 1950, there had been only 25 million tourist arrivals worldwide, and even only two decades previously – in 1990 – the number had been less than half at 435 million arrivals (World Tourism Organization, 2012a, 2012b). While people have traveled for pleasure for millennia (Towner, 1995), tourism really came into its own with the expansion of the middle classes in the 19th and 20th century, and today it is considered the world’s largest business sector, with unprecedented numbers of people venturing outside of their immediate environments to explore the world around them. In 2012, travel and tourism’s total contribution to the world economy amounted to a staggering $6.6 trillion, or 9 per cent of GDP (World Travel & Tourism Council, 2013). More than 260 million jobs were generated by it worldwide, which equates to one in every 11 jobs across the globe. While there were some hiccups during the Global Financial Crisis, growth in 2012 was stronger than in other industries, such as manufacturing, financial services and retail (World Travel & Tourism Council, 2013)...
Resumo:
Myceugenia rufa is a rare and endemic species from the coast of central Chile. There are no published studies describing flower, fruit or seed anatomy. Forty-two accessions were collected from across the geographic range of the species. Reproductive structures were fixed, dehydrated, embedded in paraffin, sectioned and stained with Safranin O and Fast green. Anatomy of floral buds, mature flowers, fruits and seeds was described. Reproductive anatomy matches that of other Myrtaceae, such as presence of druses, internal phloem and schizogenous secretory cavities in buds, flowers, fruits and seeds. The anatomy and development of reproductive structures of M. rufa might enhance the understanding for future studies regarding natural reproduction and conservation programs.
Resumo:
Accurate characterization and reporting of organic photovoltaic (OPV) device performance remains one of the important challenges in the field. The large spread among the efficiencies of devices with the same structure reported by different groups is significantly caused by different procedures and equipment used during testing. The presented article addresses this issue by offering a new method of device testing using “suitcase sample” approach combined with outdoor testing that limits the diversity of the equipment, and a strict measurement protocol. A round robin outdoor characterization of roll-to-roll coated OPV cells and modules conducted among 46 laboratories worldwide is presented, where the samples and the testing equipment were integrated in a compact suitcase that served both as a sample transportation tool and as a holder and test equipment during testing. In addition, an internet based coordination was used via plasticphotovoltaics.org that allowed fast and efficient communication among participants and provided a controlled reporting format for the results that eased the analysis of the data. The reported deviations among the laboratories were limited to 5% when compared to the Si reference device integrated in the suitcase and were up to 8% when calculated using the local irradiance data. Therefore, this method offers a fast, cheap and efficient tool for sample sharing and testing that allows conducting outdoor measurements of OPV devices in a reproducible manner.