276 resultados para Molecular orbitals.
em Queensland University of Technology - ePrints Archive
Resumo:
We report a theoretical study of the multiple oxidation states (1+, 0, 1−, and 2−) of a meso,meso-linked diporphyrin, namely bis[10,15,20-triphenylporphyrinatozinc(II)-5-yl]butadiyne (4), using Time-Dependent Density Functional Theory (TDDFT). The origin of electronic transitions of singlet excited states is discussed in comparison to experimental spectra for the corresponding oxidation states of the close analogue bis{10,15,20-tris[3‘,5‘-di-tert-butylphenyl]porphyrinatozinc(II)-5-yl}butadiyne (3). The latter were measured in previous work under in situ spectroelectrochemical conditions. Excitation energies and orbital compositions of the excited states were obtained for these large delocalized aromatic radicals, which are unique examples of organic mixed-valence systems. The radical cations and anions of butadiyne-bridged diporphyrins such as 3 display characteristic electronic absorption bands in the near-IR region, which have been successfully predicted with use of these computational methods. The radicals are clearly of the “fully delocalized” or Class III type. The key spectral features of the neutral and dianionic states were also reproduced, although due to the large size of these molecules, quantitative agreement of energies with observations is not as good in the blue end of the visible region. The TDDFT calculations are largely in accord with a previous empirical model for the spectra, which was based simplistically on one-electron transitions among the eight key frontier orbitals of the C4 (1,4-butadiyne) linked diporphyrins.
Resumo:
This PhD project has expanded the knowledge in the area of profluorescent nitroxides with regard to the synthesis and characterisations of novel profluorescent nitroxide probes as well as physical characterisation of the probe molecules in various polymer/physical environments. The synthesis of the first example of an azaphenalene-based fused aromatic nitroxide TMAO, [1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl, was described. This novel nitroxide possesses some of the structural rigidity of the isoindoline class of nitroxides, as well as some properties akin to TEMPO nitroxides. Additionally, the integral aromatic ring imparts fluorescence that is switched on by radical scavenging reactions of the nitroxide, which makes it a sensitive probe for polymer degradation. In addition to the parent TMAO, 5 other azaphenalene derivatives were successfully synthesised. This new class of nitroxide was expected to have interesting redox properties when the structure was investigated by high-level ab initio molecular orbitals theory. This was expected to have implications with biological relevance as the calculated redox potentials for the azaphenalene ring class would make them potent antioxidant compounds. The redox potentials of 25 cyclic nitroxides from four different structural classes (pyrroline, piperidine, isoindoline and azaphenalene) were determined by cyclic voltammetry in acetonitrile. It was shown that potentials related to the one electron processes of the nitroxide were influenced by the type of ring system, ring substituents or groups surrounding the moiety. Favourable comparisons were found between theoretical and experimental potentials for pyrroline, piperidine and isoindoline ring classes. Substitution of these ring classes, were correctly calculated to have a small yet predictable effect on the potentials. The redox potentials of the azaphenalene ring class were underestimated by the calculations in all cases by at least a factor of two. This is believed to be due to another process influencing the redox potentials of the azaphenalene ring class which is not taken into account by the theoretical model. It was also possible to demonstrate the use of both azaphenalene and isoindoline nitroxides as additives for monitoring radical mediated damage that occurs in polypropylene as well as in more commercially relevant polyester resins. Polymer sample doped with nitroxide were exposed to both thermo-and photo-oxidative conditions with all nitroxides showing a protective effect. It was found that isoindoline nitroxides were able to indicate radical formation in polypropylene aged at elevated temperatures via fluorescence build-up. The azaphenalene nitroxide TMAO showed no such build-up of fluorescence. This was believed to be due to the more labile bond between the nitroxide and macromolecule and the protection may occur through a classical Denisov cycle, as is expected for commercially available HAS units. Finally, A new profluorescent dinitroxide, BTMIOA (9,10-bis(1,1,3,3- tetramethylisoindolin-2-yloxyl-5-yl)anthracene), was synthesised and shown to be a powerful probe for detecting changes during the initial stages of thermo-oxidative degradation of polypropylene. This probe, which contains a 9,10-diphenylanthracene core linked to two nitroxides, possesses strongly suppressed fluorescence due to quenching by the two nitroxide groups. This molecule also showed the greatest protective effect on thermo-oxidativly aged polypropylene. Most importantly, BTMIOA was found to be a valuable tool for imaging and mapping free-radical generation in polypropylene using fluorescence microscopy.
Resumo:
Pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione or diketopyrrolopyrrole (DPP) is a useful electron-withdrawing fused aromatic moiety for the preparation of donor-acceptor polymers as active semiconductors for organic electronics. This study uses a DPP-furan-containing building block, 3,6-di(furan-2-yl)pyrrolo[3,4- c]pyrrole-1,4(2H,5H)-dione (DBF), to couple with a 2,2′-bithiophene unit, forming a new donor-acceptor copolymer, PDBFBT. Compared to its structural analogue, 3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DBT), DBF is found to cause blue shifts of the absorption spectra both in solution and in thin films and a slight reduction of the highest occupied molecular orbital (HOMO) energy level of the resulting PDBFBT. Despite the fact that its thin films are less crystalline and have a rather disordered chain orientation in the crystalline domains, PDBFBT shows very high hole mobility up to 1.54 cm 2 V-1 s-1 in bottom-gate, top-contact organic thin film transistors.
Resumo:
The synthesis, electronic absorption and 1H NMR spectra of a suite of novel porphyrinoids derived from meso-bromoporphyrins by palladium-catalysed aminations using ethyl and tert-butylcarbazates are reported. Instead of the expected carbazate-substituted porphyrins, a facile oxidative dearomatisation of the porphyrin ring occurs in high yield, especially for the nickel(II) complexes, resulting in high yields of 5,15-diiminoporphodimethenes (DIPDs). The analogous zinc(II) and free base DIPDs were also characterised, the former by X-ray crystallography. The oxidation and reduction reactions of DIPDs and their precursor carbazate porphyrins were studied. Density Functional Theory (DFT) was used to calculate the optimised geometries and frontier molecular orbitals of DIPD Ni8c and bis(azocarboxylate) 19c, and Time Dependent DFT calculations allowed the prediction of electronic absorption spectra, whose characteristics corresponded well with those of the observed solution spectra. In the latter case, the calculated low-energy absorptions were unlike those of a typical porphyrin, due to the near-degeneracy of the highest filled frontier orbitals, and the wide energy separation between the unfilled orbitals. This feature was present in the observed spectrum.
Resumo:
A new dearomatized porphyrinoid, 5,10-diiminoporphodimethene (5,10-DIPD), has been prepared by palladium-catalyzed hydrazination of 5,10-dibromo-15,20-bis(3,5-di-tert-butylphenyl)porphyrin and its nickel(II) complex, by using ethyl and 4-methoxybenzyl carbazates. The oxidative dearomatization of the porphyrin ring occurs in high yield. Further oxidation with 2,3-dichloro-5,6-dicyanobenzoquinone forms the corresponding 5,10-bis(azocarboxylates), thereby restoring the porphyrin aromaticity. The UV/visible spectra of the NiII DIPDs exhibit remarkable redshifts of the lowest-energy bands to 780 nm, and differential pulse voltammetry reveals a contracted electrochemical HOMO–LUMO gap of 1.44 V. Density functional theory (DFT) was used to calculate the optimized geometries and frontier molecular orbitals of model 5,10-DIPD Ni7c and 5,10-bis(azocarboxylate) Ni8c. The conformations of the carbamate groups and the configurations of the CNZ unit were considered in conjunction with the NOESY spectra, to generate the global minimum geometry and two other structures with slightly higher energies. In the absence of solution data regarding conformations, ten possible local minimum conformations were considered for Ni8c. Partition of the porphyrin macrocycle into tri- and monopyrrole fragments in Ni7c and the inclusion of terminal conjugating functional groups generate unique frontier molecular orbital distributions and a HOMO–LUMO transition with a strong element of charge transfer from the monopyrrole ring. Time-dependent DFT calculations were performed for the three lowest-energy structures of Ni7c and Ni8c, and weighting according to their energies allowed the prediction of the electronic spectra. The calculations reproduce the lower-energy regions of the spectra and the overall forms of the spectra with high accuracy, but agreement is not as good in the Soret region below 450 nm.
Resumo:
The infrared (IR) spectroscopic data for a series of eleven heteroleptic bis(phthalocyaninato) rare earth complexes MIII(Pc)[Pc(α-OC5H11)4] (M = Sm–Lu, Y) [H2Pc = unsubstituted phthalocyanine, H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected with 2 cm−1 resolution. Raman spectroscopic properties in the range of 500–1800 cm−1 for these double-decker molecules have also been comparatively studied using laser excitation sources emitting at 632.8 and 785 nm. Both the IR and Raman spectra for M(Pc)[Pc(α-OC5H11)4] are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues due to the decreased molecular symmetry of these double-decker compounds, namely C4. For this series, the IR Pc√− marker band appears as an intense absorption at 1309–1317 cm−1, attributed to the pyrrole stretching. With laser excitation at 632.8 nm, Raman vibrations derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. In contrast, when excited with laser radiation of 785 nm, the ring radial vibrations of isoindole moieties and dihedral plane deformations between 500 and 1000 cm−1 for M(Pc)[Pc(α-OC5H11)4] intensify to become the strongest scatterings. Both techniques reveal that the frequencies of pyrrole stretching, isoindole breathing, isoindole stretchings, aza stretchings and coupling of pyrrole and aza stretchings depend on the rare earth ionic size, shifting to higher energy along with the lanthanide contraction due to the increased ring-ring interaction across the series. The assignments of the vibrational bands for these compounds have been made and discussed in relation to other unsubstituted and substituted bis(phthalocyaninato) rare earth analogues, such as M(Pc)2 and M(OOPc)2 [H2OOPc = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine].
Resumo:
To enhance and regulate cell affinity for poly (l-lactic acid) (PLLA) based materials, two hydrophilic ligands, poly (ethylene glycol) (PEG) and poly (l-lysine) (PLL), were used to develop triblock copolymers: methoxy-terminated poly (ethylene glycol)-block-poly (l-lactide)-block-poly (l-lysine) (MPEG-b-PLLA-b-PLL) in order to regulate protein absorption and cell adhesion. Bone marrow stromal cells (BMSCs) were cultured on different composition of MPEG-b-PLLA-b-PLL copolymer films to determine the effect of modified polymer surfaces on BMSC attachment. To understand the molecular mechanism governing the initial cell adhesion on difference polymer surfaces, the mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analysed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). It was found that down regulation of adhesion molecules was responsible for the impaired BMSC attachment on PLLA surface. MPEG-b-PLLA-b-PLL copolymer films improved significantly the cell adhesion and cytoskeleton expression by upregulation of relevant molecule genes significantly. Six adhesion genes (CDH1, ITGL, NCAM1, SGCE, COL16A1, and LAMA3) were most significantly influenced by the modified PLLA surfaces. In summary, polymer surfaces altered adhesion molecule gene expression of BMSCs, which consequently regulated cell initial attachment on modified PLLA surfaces.
Resumo:
Human-specific Bacteroides HF183 (HS-HF183), human-specific Enterococci faecium esp (HS-esp), human-specific adenoviruses (HS-AVs) and human-specific polyomaviruses (HS-PVs) assays were evaluated in freshwater, seawater and distilled water to detect fresh sewage. The sewage spiked water samples were also tested for the concentrations of traditional fecal indicators (i.e., Escherichia coli, enterococci and Clostridium perfringens) and enteric viruses such as enteroviruses (EVs), sapoviruses (SVs), and torquetenoviruses (TVs). The overall host-specificity of the HS-HF183 marker to differentiate between humans and other animals was 98%. However, the HS-esp, HS-AVs and HS-PVs showed 100% hostspecificity. All the human-specific markers showed >97% sensitivity to detect human fecal pollution. E. coli, enterococci and, C. perfringens were detected up to dilutions of sewage 10_5, 10_4 and 10_3 respectively.HS-esp, HS-AVs, HS-PVs, SVs and TVs were detected up to dilution of sewage 10_4 whilst EVs were detected up to dilution 10_5. The ability of the HS-HF183 marker to detect freshsewagewas3–4 orders ofmagnitude higher than that of the HS-esp and viral markers. The ability to detect fresh sewage in freshwater, seawater and distilled water matrices was similar for human-specific bacterial and viral marker. Based on our data, it appears that human-specific molecular markers are sensitive measures of fresh sewage pollution, and the HS-HF183 marker appears to be the most sensitive among these markers in terms of detecting fresh sewage. However, the presence of the HS-HF183 marker in environmental waters may not necessarily indicate the presence of enteric viruses due to their high abundance in sewage compared to enteric viruses. More research is required on the persistency of these markers in environmental water samples in relation to traditional fecal indicators and enteric pathogens.
Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker.
Resumo:
BACKGROUND: Although we know much about the molecular makeup of the sinus node (SN) in small mammals, little is known about it in humans. The aims of the present study were to investigate the expression of ion channels in the human SN and to use the data to predict electrical activity. METHODS AND RESULTS: Quantitative polymerase chain reaction, in situ hybridization, and immunofluorescence were used to analyze 6 human tissue samples. Messenger RNA (mRNA) for 120 ion channels (and some related proteins) was measured in the SN, a novel paranodal area, and the right atrium (RA). The results showed, for example, that in the SN compared with the RA, there was a lower expression of Na(v)1.5, K(v)4.3, K(v)1.5, ERG, K(ir)2.1, K(ir)6.2, RyR2, SERCA2a, Cx40, and Cx43 mRNAs but a higher expression of Ca(v)1.3, Ca(v)3.1, HCN1, and HCN4 mRNAs. The expression pattern of many ion channels in the paranodal area was intermediate between that of the SN and RA; however, compared with the SN and RA, the paranodal area showed greater expression of K(v)4.2, K(ir)6.1, TASK1, SK2, and MiRP2. Expression of ion channel proteins was in agreement with expression of the corresponding mRNAs. The levels of mRNA in the SN, as a percentage of those in the RA, were used to estimate conductances of key ionic currents as a percentage of those in a mathematical model of human atrial action potential. The resulting SN model successfully produced pacemaking. CONCLUSIONS: Ion channels show a complex and heterogeneous pattern of expression in the SN, paranodal area, and RA in humans, and the expression pattern is appropriate to explain pacemaking.
Resumo:
The interactions of phenyldithioesters with gold nanoparticles (AuNPs) have been studied by monitoring changes in the surface plasmon resonance (SPR), depolarised light scattering, and surface enhanced Raman spectroscopy (SERS). Changes in the SPR indicated that an AuNP-phenyldithioester charge transfer complex forms in equilibrium with free AuNPs and phenyldithioester. Analysis of the Langmuir binding isotherms indicated that the equilibrium adsorption constant, Kads, was 2.3 ± 0.1 × 106 M−1, which corresponded to a free energy of adsorption of 36 ± 1 kJ mol−1. These values are comparable to those reported for interactions of aryl thiols with gold and are of a similar order of magnitude to moderate hydrogen bonding interactions. This has significant implications in the application of phenyldithioesters for the functionalization of AuNPs. The SERS results indicated that the phenyldithioesters interact with AuNPs through the C═S bond, and the molecules do not disassociate upon adsorption to the AuNPs. The SERS spectra are dominated by the portions of the molecule that dominate the charge transfer complex with the AuNPs. The significance of this in relation to the use of phenyldithioesters for molecular barcoding of nanoparticle assemblies is discussed.
Resumo:
Biomineralization is a process encompassing all mineral containing tissues produced within an organism. The most dynamic example of this process is the formation of the mollusk shell, comprising a variety of crystal phases and microstructures. The organic component incorporated within the shell is said to dictate this remarkable architecture. Subsequently, for the past decade considerable research have been undertaken to identify and characterize the protein components involved in biomineralization. Despite these efforts the general understanding of the process remains ambiguous. This study employs a novel molecular approach to further the elucidation of the shell biomineralization. A microarray platform has been custom generated (PmaxArray 1.0) from the pearl oyster Pinctada maxima. PmaxArray 1.0 consists of 4992 expressed sequence tags (ESTs) originating from the mantle, an organ involved in shell formation. This microarray has been used as the primary tool for three separate investigations in an effort to associate transcriptional gene expression from P. maxima to the process of shell biomineralization. The first investigation analyzes the spatial expression of ESTs throughout the mantle organ. The mantle was dissected into five discrete regions and each analyzed for gene expression with PmaxArray 1.0. Over 2000 ESTs were differentially expressed among the tissue sections, identifying five major expression regions. Three of these regions have been proposed to have shell formation functions belonging to nacre, prismatic calcite and periostracum. The spatial gene expression map was confirmed by in situ hybridization, localizing a subset of ESTs from each expression region to the same mantle area. Comparative sequence analysis of ESTs expressed in the proposed shell formation regions with the BLAST tool, revealed a number of the transcripts were novel while others showed significant sequence similarities to previously characterized shell formation genes. The second investigation correlates temporal EST expression during P. maxima larval ontogeny with transitions in shell mineralization during the same period. A timeline documenting the morphologicat microstructural and mineralogical shell characteristics of P. maxima throughout larval ontogeny has been established. Three different shell types were noted based on the physical characters and termed, prodissoconch I, prodissoconch 11 and dissoconch. PmaxArray 1.0 analyzed ESTs expression of animals throughout the larval development of P. maxima, noting up-regulation of 359 ESTs in association with the shell transitions from prodissoconch 1 to prodissoconch 11 to dissoconch. Comparative sequence analysis of these ESTs indicates a number of the transcripts are novel as well as showing significant sequence similarities between ESTs and known shell matrix associated genes and proteins. These ESTs are discussed in relation to the shell characters associated with their temporal expression. The third investigation uses PmaxArray 1.0 to analyze gene expression in the mantle tissue of P. maxima specimens exposed to sub-lethal concentrations of a shell-deforming toxin, tributyltin (TBT). The shell specific effects of TBT are used in this investigation to interpret differential expression of ESTs with respect to shell formation functions. A lethal and sublethal TBT concentration range was established for P. maxima, noting a concentration of 50 ng L- 1 TBT as sub-lethal over a 21 day period. Mantle tissue from P. maxima animals treated with 50 ng L- 1 TBT was assessed for differential EST expression with untreated control animals. A total of 102 ESTs were identified as differentially expressed in association with TBT exposure, comparative sequence identities included an up-regulation of immunity and detoxification related genes and down-regulation of several shell matrix genes. A number of transcripts encoding novel peptides were additionally identified. The potential actions of these genes are discussed with reference to TBT toxicity and shell biomineralization. This thesis has used a microarray platform to analyze gene expression in spatial, temporal and toxicity investigations, revealing the involvement of numerous gene transcripts in specific shell formation functions. Investigation of thousands of transcripts simultaneously has provided a holistic interpretation of the organic components regulating shell biomineralization.