622 resultados para Module-based robots

em Queensland University of Technology - ePrints Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to describe an innovative compliance control architecture for hybrid multi‐legged robots. The approach was verified on the hybrid legged‐wheeled robot ASGUARD, which was inspired by quadruped animals. The adaptive compliance controller allows the system to cope with a variety of stairs, very rough terrain, and is also able to move with high velocity on flat ground without changing the control parameters. Design/methodology/approach – The paper shows how this adaptivity results in a versatile controller for hybrid legged‐wheeled robots. For the locomotion control we use an adaptive model of motion pattern generators. The control approach takes into account the proprioceptive information of the torques, which are applied on the legs. The controller itself is embedded on a FPGA‐based, custom designed motor control board. An additional proprioceptive inclination feedback is used to make the same controller more robust in terms of stair‐climbing capabilities. Findings – The robot is well suited for disaster mitigation as well as for urban search and rescue missions, where it is often necessary to place sensors or cameras into dangerous or inaccessible areas to get a better situation awareness for the rescue personnel, before they enter a possibly dangerous area. A rugged, waterproof and dust‐proof corpus and the ability to swim are additional features of the robot. Originality/value – Contrary to existing approaches, a pre‐defined walking pattern for stair‐climbing was not used, but an adaptive approach based only on internal sensor information. In contrast to many other walking pattern based robots, the direct proprioceptive feedback was used in order to modify the internal control loop, thus adapting the compliance of each leg on‐line.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conventional cameras have limited dynamic range, and as a result vision-based robots cannot effectively view an environment made up of both sunny outdoor areas and darker indoor areas. This paper presents an approach to extend the effective dynamic range of a camera, achieved by changing the exposure level of the camera in real-time to form a sequence of images which collectively cover a wide range of radiance. Individual control algorithms for each image have been developed to maximize the viewable area across the sequence. Spatial discrepancies between images, caused by the moving robot, are improved by a real-time image registration process. The sequence is then combined by merging color and contour information. By integrating these techniques it becomes possible to operate a vision-based robot in wide radiance range scenes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rats are superior to the most advanced robots when it comes to creating and exploiting spatial representations. A wild rat can have a foraging range of hundreds of meters, possibly kilometers, and yet the rodent can unerringly return to its home after each foraging mission, and return to profitable foraging locations at a later date (Davis, et al., 1948). The rat runs through undergrowth and pipes with few distal landmarks, along paths where the visual, textural, and olfactory appearance constantly change (Hardy and Taylor, 1980; Recht, 1988). Despite these challenges the rat builds, maintains, and exploits internal representations of large areas of the real world throughout its two to three year lifetime. While algorithms exist that allow robots to build maps, the questions of how to maintain those maps and how to handle change in appearance over time remain open. The robotic approach to map building has been dominated by algorithms that optimise the geometry of the map based on measurements of distances to features. In a robotic approach, measurements of distance to features are taken with range-measuring devices such as laser range finders or ultrasound sensors, and in some cases estimates of depth from visual information. The features are incorporated into the map based on previous readings of other features in view and estimates of self-motion. The algorithms explicitly model the uncertainty in measurements of range and the measurement of self-motion, and use probability theory to find optimal solutions for the geometric configuration of the map features (Dissanayake, et al., 2001; Thrun and Leonard, 2008). Some of the results from the application of these algorithms have been impressive, ranging from three-dimensional maps of large urban strucutures (Thrun and Montemerlo, 2006) to natural environments (Montemerlo, et al., 2003).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Robotics is taught in many Australian ICT classrooms, in both primary and secondary schools. Robotics activities, including those developed using the LEGO Mindstorms NXT technology, are mathematics-rich and provide a fertile round for learners to develop and extend their mathematical thinking. However, this context for learning mathematics is often under-exploited. In this paper a variant of the model construction sequence (Lesh, Cramer, Doerr, Post, & Zawojewski, 2003) is proposed, with the purpose of explicitly integrating robotics and mathematics teaching and learning. Lesh et al.’s model construction sequence and the model eliciting activities it embeds were initially researched in primary mathematics classrooms and more recently in university engineering courses. The model construction sequence involves learners working collaboratively upon product-focussed tasks, through which they develop and expose their conceptual understanding. The integrating model proposed in this paper has been used to design and analyse a sequence of activities in an Australian Year 4 classroom. In that sequence more traditional classroom learning was complemented by the programming of LEGO-based robots to ‘act out’ the addition and subtraction of simple fractions (tenths) on a number-line. The framework was found to be useful for planning the sequence of learning and, more importantly, provided the participating teacher with the ability to critically reflect upon robotics technology as a tool to scaffold the learning of mathematics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To navigate successfully in a previously unexplored environment, a mobile robot must be able to estimate the spatial relationships of the objects of interest accurately. A Simultaneous Localization and Mapping (SLAM) sys- tem employs its sensors to build incrementally a map of its surroundings and to localize itself in the map simultaneously. The aim of this research project is to develop a SLAM system suitable for self propelled household lawnmowers. The proposed bearing-only SLAM system requires only an omnidirec- tional camera and some inexpensive landmarks. The main advantage of an omnidirectional camera is the panoramic view of all the landmarks in the scene. Placing landmarks in a lawn field to define the working domain is much easier and more flexible than installing the perimeter wire required by existing autonomous lawnmowers. The common approach of existing bearing-only SLAM methods relies on a motion model for predicting the robot’s pose and a sensor model for updating the pose. In the motion model, the error on the estimates of object positions is cumulated due mainly to the wheel slippage. Quantifying accu- rately the uncertainty of object positions is a fundamental requirement. In bearing-only SLAM, the Probability Density Function (PDF) of landmark position should be uniform along the observed bearing. Existing methods that approximate the PDF with a Gaussian estimation do not satisfy this uniformity requirement. This thesis introduces both geometric and proba- bilistic methods to address the above problems. The main novel contribu- tions of this thesis are: 1. A bearing-only SLAM method not requiring odometry. The proposed method relies solely on the sensor model (landmark bearings only) without relying on the motion model (odometry). The uncertainty of the estimated landmark positions depends on the vision error only, instead of the combination of both odometry and vision errors. 2. The transformation of the spatial uncertainty of objects. This thesis introduces a novel method for translating the spatial un- certainty of objects estimated from a moving frame attached to the robot into the global frame attached to the static landmarks in the environment. 3. The characterization of an improved PDF for representing landmark position in bearing-only SLAM. The proposed PDF is expressed in polar coordinates, and the marginal probability on range is constrained to be uniform. Compared to the PDF estimated from a mixture of Gaussians, the PDF developed here has far fewer parameters and can be easily adopted in a probabilistic framework, such as a particle filtering system. The main advantages of our proposed bearing-only SLAM system are its lower production cost and flexibility of use. The proposed system can be adopted in other domestic robots as well, such as vacuum cleaners or robotic toys when terrain is essentially 2D.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Current state of the art robot mapping and navigation systems produce impressive performance under a narrow range of robot platform, sensor and environmental conditions, in contrast to animals such as rats that produce “good enough” maps that enable them to function under an incredible range of situations. In this paper we present a rat-inspired featureless sensor-fusion system that assesses the usefulness of multiple sensor modalities based on their utility and coherence for place recognition during a navigation task, without knowledge as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and outdoor environments with abrupt lighting changes. Through dynamic weighting of the sensors, the system is able to perform correct place recognition and mapping where the static sensor weighting approach fails.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We introduce a new image-based visual navigation algorithm that allows the Cartesian velocity of a robot to be defined with respect to a set of visually observed features corresponding to previously unseen and unmapped world points. The technique is well suited to mobile robot tasks such as moving along a road or flying over the ground. We describe the algorithm in general form and present detailed simulation results for an aerial robot scenario using a spherical camera and a wide angle perspective camera, and present experimental results for a mobile ground robot.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"This work considers a mobile service robot which uses an appearance-based representation of its workplace as a map, where the current view and the map are used to estimate the current position in the environment. Due to the nature of real-world environments such as houses and offices, where the appearance keeps changing, the internal representation may become out of date after some time. To solve this problem the robot needs to be able to adapt its internal representation continually to the changes in the environment. This paper presents a method for creating an adaptive map for long-term appearance-based localization of a mobile robot using long-term and short-term memory concepts, with omni-directional vision as the external sensor."--publisher website

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Throughout a lifetime of operation, a mobile service robot needs to acquire, store and update its knowledge of a working environment. This includes the ability to identify and track objects in different places, as well as using this information for interaction with humans. This paper introduces a long-term updating mechanism, inspired by the modal model of human memory, to enable a mobile robot to maintain its knowledge of a changing environment. The memory model is integrated with a hybrid map that represents the global topology and local geometry of the environment, as well as the respective 3D location of objects. We aim to enable the robot to use this knowledge to help humans by suggesting the most likely locations of specific objects in its map. An experiment using omni-directional vision demonstrates the ability to track the movements of several objects in a dynamic environment over an extended period of time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of UAVs for remote sensing tasks; e.g. agriculture, search and rescue is increasing. The ability for UAVs to autonomously find a target and perform on-board decision making, such as descending to a new altitude or landing next to a target is a desired capability. Computer-vision functionality allows the Unmanned Aerial Vehicle (UAV) to follow a designated flight plan, detect an object of interest, and change its planned path. In this paper we describe a low cost and an open source system where all image processing is achieved on-board the UAV using a Raspberry Pi 2 microprocessor interfaced with a camera. The Raspberry Pi and the autopilot are physically connected through serial and communicate via MAVProxy. The Raspberry Pi continuously monitors the flight path in real time through USB camera module. The algorithm checks whether the target is captured or not. If the target is detected, the position of the object in frame is represented in Cartesian coordinates and converted into estimate GPS coordinates. In parallel, the autopilot receives the target location approximate GPS and makes a decision to guide the UAV to a new location. This system also has potential uses in the field of Precision Agriculture, plant pest detection and disease outbreaks which cause detrimental financial damage to crop yields if not detected early on. Results show the algorithm is accurate to detect 99% of object of interest and the UAV is capable of navigation and doing on-board decision making.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile robots are widely used in many industrial fields. Research on path planning for mobile robots is one of the most important aspects in mobile robots research. Path planning for a mobile robot is to find a collision-free route, through the robot’s environment with obstacles, from a specified start location to a desired goal destination while satisfying certain optimization criteria. Most of the existing path planning methods, such as the visibility graph, the cell decomposition, and the potential field are designed with the focus on static environments, in which there are only stationary obstacles. However, in practical systems such as Marine Science Research, Robots in Mining Industry, and RoboCup games, robots usually face dynamic environments, in which both moving and stationary obstacles exist. Because of the complexity of the dynamic environments, research on path planning in the environments with dynamic obstacles is limited. Limited numbers of papers have been published in this area in comparison with hundreds of reports on path planning in stationary environments in the open literature. Recently, a genetic algorithm based approach has been introduced to plan the optimal path for a mobile robot in a dynamic environment with moving obstacles. However, with the increase of the number of the obstacles in the environment, and the changes of the moving speed and direction of the robot and obstacles, the size of the problem to be solved increases sharply. Consequently, the performance of the genetic algorithm based approach deteriorates significantly. This motivates the research of this work. This research develops and implements a simulated annealing algorithm based approach to find the optimal path for a mobile robot in a dynamic environment with moving obstacles. The simulated annealing algorithm is an optimization algorithm similar to the genetic algorithm in principle. However, our investigation and simulations have indicated that the simulated annealing algorithm based approach is simpler and easier to implement. Its performance is also shown to be superior to that of the genetic algorithm based approach in both online and offline processing times as well as in obtaining the optimal solution for path planning of the robot in the dynamic environment. The first step of many path planning methods is to search an initial feasible path for the robot. A commonly used method for searching the initial path is to randomly pick up some vertices of the obstacles in the search space. This is time consuming in both static and dynamic path planning, and has an important impact on the efficiency of the dynamic path planning. This research proposes a heuristic method to search the feasible initial path efficiently. Then, the heuristic method is incorporated into the proposed simulated annealing algorithm based approach for dynamic robot path planning. Simulation experiments have shown that with the incorporation of the heuristic method, the developed simulated annealing algorithm based approach requires much shorter processing time to get the optimal solutions in the dynamic path planning problem. Furthermore, the quality of the solution, as characterized by the length of the planned path, is also improved with the incorporated heuristic method in the simulated annealing based approach for both online and offline path planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Competent navigation in an environment is a major requirement for an autonomous mobile robot to accomplish its mission. Nowadays, many successful systems for navigating a mobile robot use an internal map which represents the environment in a detailed geometric manner. However, building, maintaining and using such environment maps for navigation is difficult because of perceptual aliasing and measurement noise. Moreover, geometric maps require the processing of huge amounts of data which is computationally expensive. This thesis addresses the problem of vision-based topological mapping and localisation for mobile robot navigation. Topological maps are concise and graphical representations of environments that are scalable and amenable to symbolic manipulation. Thus, they are well-suited for basic robot navigation applications, and also provide a representational basis for the procedural and semantic information needed for higher-level robotic tasks. In order to make vision-based topological navigation suitable for inexpensive mobile robots for the mass market we propose to characterise key places of the environment based on their visual appearance through colour histograms. The approach for representing places using visual appearance is based on the fact that colour histograms change slowly as the field of vision sweeps the scene when a robot moves through an environment. Hence, a place represents a region of the environment rather than a single position. We demonstrate in experiments using an indoor data set, that a topological map in which places are characterised using visual appearance augmented with metric clues provides sufficient information to perform continuous metric localisation which is robust to the kidnapped robot problem. Many topological mapping methods build a topological map by clustering visual observations to places. However, due to perceptual aliasing observations from different places may be mapped to the same place representative in the topological map. A main contribution of this thesis is a novel approach for dealing with the perceptual aliasing problem in topological mapping. We propose to incorporate neighbourhood relations for disambiguating places which otherwise are indistinguishable. We present a constraint based stochastic local search method which integrates the approach for place disambiguation in order to induce a topological map. Experiments show that the proposed method is capable of mapping environments with a high degree of perceptual aliasing, and that a small map is found quickly. Moreover, the method of using neighbourhood information for place disambiguation is integrated into a framework for topological off-line simultaneous localisation and mapping which does not require an initial categorisation of visual observations. Experiments on an indoor data set demonstrate the suitability of our method to reliably localise the robot while building a topological map.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with choosing image features for image based visual servo control and how this choice influences the closed-loop dynamics of the system. In prior work, image features tend to be chosen on the basis of image processing simplicity and noise sensitivity. In this paper we show that the choice of feature directly influences the closed-loop dynamics in task-space. We focus on the depth axis control of a visual servo system and compare analytically various approaches that have been reported recently in the literature. The theoretical predictions are verified by experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the question of designing a fully image based visual servo control for a dynamic system. The work is motivated by the ongoing development of image based visual servo control of small aerial robotic vehicles. The observed targets considered are coloured blobs on a flat surface to which the normal direction is known. The theoretical framework is directly applicable to the case of markings on a horizontal floor or landing field. The image features used are a first order spherical moment for position and an image flow measurement for velocity. A fully non-linear adaptive control design is provided that ensures global stability of the closed-loop system. © 2005 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (as opposed to radar). This paper describes the development and evaluation of a vision-based collision detection algorithm suitable for fixed-wing aerial robotics. The system was evaluated using highly realistic vision data of the moments leading up to a collision. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We make use of the enormous potential of graphic processing units to achieve processing rates of 30Hz (for images of size 1024-by- 768). Currently, integration in the final platform is under way.