15 resultados para Modelli pseudo-hermitiani,non-unitary conformal field theory,c-theorem
em Queensland University of Technology - ePrints Archive
Resumo:
This article introduces a “pseudo classical” notion of modelling non-separability. This form of non-separability can be viewed as lying between separability and quantum-like non-separability. Non-separability is formalized in terms of the non-factorizabilty of the underlying joint probability distribution. A decision criterium for determining the non-factorizability of the joint distribution is related to determining the rank of a matrix as well as another approach based on the chi-square-goodness-of-fit test. This pseudo-classical notion of non-separability is discussed in terms of quantum games and concept combinations in human cognition.
Resumo:
Measures and theories of information abound, but there are few formalised methods for treating the contextuality that can manifest in different information systems. Quantum theory provides one possible formalism for treating information in context. This paper introduces a quantum-like model of the human mental lexicon, and shows one set of recent experimental data suggesting that concept combinations can indeed behave non-separably. There is some reason to believe that the human mental lexicon displays entanglement.
Resumo:
The single crystal Raman spectra of minerals brandholzite and bottinoite, formula M[Sb(OH)6]2•6H2O, where M is Mg+2 and Ni+2 respectively, and the non-aligned Raman spectrum of mopungite, formula Na[Sb(OH)6], are presented for the first time. The mixed metal minerals comprise of alternating layers of [Sb(OH)6]-1 octahedra and mixed [M(H2O)6]+2 / [Sb(OH)6]-1 octahedra. Mopungite comprises hydrogen bonded layers of [Sb(OH)6]-1 octahedra linked within the layer by Na+ ions. The spectra of the three minerals were dominated by the Sb-O symmetric stretch of the [Sb(OH)6]-1 octahedron, which occurs at approximately 620 cm-1. The Raman spectrum of mopungite showed many similarities to spectra of the di-octahedral minerals informing the view that the Sb octahedra gave rise to most of the Raman bands observed, particularly below 1200 cm-1. Assignments have been proposed based on the spectral comparison between the minerals, prior literature and density field theory calculations of the vibrational spectra of the free [Sb(OH)6]-1 and [M(H2O)6]+2 octahedra by a model chemistry of B3LYP/6-31G(d) and lanl2dz for the Sb atom. The single crystal data spectra showed good mode separation, allowing the majority of the bands to be assigned a symmetry species of A or E.
Resumo:
Background Dieting has historically been the main behavioural treatment paradigm for overweight/obesity, although a non-dieting paradigm has more recently emerged based on the criticisms of the original dieting approach. There is a dearth of research contrasting why these approaches are adopted. To address this, we conducted a qualitative investigation into the determinants of dieting and non-dieting approaches based on the perspectives and experiences of overweight/obese Australian adults. Methods Grounded theory was used inductively to generate a model of themes contrasting the determinants of dieting and non-dieting approaches based on the perspectives of 21 overweight/obese adults. Data was collected using semi-structured interviews to elicit in-depth individual experiences and perspectives. Results Several categories emerged which distinguished between the adoption of a dieting or non-dieting approach. These categories included the focus of each approach (weight/image or lifestyle/health behaviours); internal or external attributions about dieting failure; attitudes towards established diets, and personal autonomy. Personal autonomy was also influenced by another category; the perceived knowledge and self-efficacy about each approach, with adults more likely to choose an approach they knew more about and were confident in implementing. The time perspective of change (short or long-term) and the perceived identity of the person (fat/dieter or healthy person) also emerged as determinants of dieting or non-dieting approaches respectively. Conclusions The model of determinants elicited from this study assists in understanding why dieting and non-dieting approaches are adopted, from the perspectives and experiences of overweight/obese adults. Understanding this decision-making process can assist clinicians and public health researchers to design and tailor dieting and non-dieting interventions to population subgroups that have preferences and characteristics suitable for each approach.
Resumo:
Polymeric graphitic carbon nitride materials have attracted increasing attention in recent years owning to their potential applications in energy conversion, environment protection, and so on. Here, from first-principles calculations, we report the electronic structure modification of graphitic carbon nitride (g-C3N4) in response to carbon doping. We showed that each dopant atom can induce a local magnetic moment of 1.0 μB in non-magnetic g-C3N4. At the doping concentration of 1/14, the local magnetic moments of the most stable doping configuration which has the dopant atom at the center of heptazine unit prefer to align in a parallel way leading to long-range ferromagnetic (FM) ordering. When the joint N atom is replaced by C atom, the system favors an antiferromagnetic (AFM) ordering at unstrained state, but can be tuned to ferromagnetism (FM) by applying biaxial tensile strain. More interestingly, the FM state of the strained system is half-metallic with abundant states at the Fermi level in one spin channel and a band gap of 1.82 eV in another spin channel. The Curie temperature (Tc) was also evaluated using a mean-field theory and Monte Carlo simulations within the Ising model. Such tunable electron spin-polarization and ferromagnetism are quite promising for the applications of graphitic carbon nitride in spintronics.
Resumo:
Nuclei and electrons in condensed matter and/or molecules are usually entangled, due to the prevailing (mainly electromagnetic) interactions. However, the "environment" of a microscopic scattering system (e.g. a proton) causes ultrafast decoherence, thus making atomic and/or nuclear entanglement e®ects not directly accessible to experiments. However, our neutron Compton scattering experiments from protons (H-atoms) in condensed systems and molecules have a characteristic collisional time about 100|1000 attoseconds. The quantum dynamics of an atom in this ultrashort, but ¯nite, time window is governed by non-unitary time evolution due to the aforementioned decoherence. Unexpectedly, recent theoretical investigations have shown that decoherence can also have the following energetic consequences. Disentangling two subsystems A and B of a quantum system AB is tantamount to erasure of quantum phase relations between A and B. This erasure is widely believed to be an innocuous process, which e.g. does not a®ect the energies of A and B. However, two independent groups proved recently that disentangling two systems, within a su±ciently short time interval, causes increase of their energies. This is also derivable by the simplest Lindblad-type master equation of one particle being subject to pure decoherence. Our neutron-proton scattering experiments with H2 molecules provide for the first time experimental evidence of this e®ect. Our results reveal that the neutron-proton collision, leading to the cleavage of the H-H bond in the attosecond timescale, is accompanied by larger energy transfer (by about 2|3%) than conventional theory predicts. Preliminary results from current investigations show qualitatively the same e®ect in the neutron-deuteron Compton scattering from D2 molecules. We interpret the experimental findings by treating the neutron-proton (or neutron-deuteron) collisional system as an entangled open quantum system being subject to fast decoherence caused by its "environment" (i.e., two electrons plus second nucleus of H2 or D2). The presented results seem to be of generic nature, and may have considerable consequences for various processes in condensed matter and molecules, e.g. in elementary chemical reactions.
Resumo:
Objective. To evaluate the effectiveness of a single-session online theory of planned behaviour (TPB)-based intervention to improve sun-protective attitudes and behaviour among Australian adults. Methods. Australian adults (N = 534; 38.7% males; Mage = 39.3 years) from major cities (80.9%), regional (17.6%) and remote areas (1.5%)were recruited and randomly allocated to an intervention (N=265) and information only group (N = 267). The online intervention focused on fostering positive attitudes, perceptions of normative support, and control perceptions for sun protection. Participants completed questionnaires assessing standard TPB measures (attitude, subjective norm, perceived behavioural control, intention, behaviour) and extended TPB constructs of group norm (friends, family), personal norm, and image norm, pre-intervention (Time 1) and one week (Time 2) and one month post-intervention (Time 3). Repeated Measures Multivariate Analysis of Variance tested intervention effects across time. Results. Intervention participants reported more positive attitudes towards sun protection and used sunprotective measures more often in the subsequent month than participants receiving information only. The intervention effects on control perceptions and norms were non-significant. Conclusions. A theory-based online intervention fostering more favourable attitudes towards sun safety can increase sun protection attitudes and self-reported behaviour among Australian adults in the short term.
Resumo:
Intimate partner abuse and control is one of the most common forms of violence against women, and is considered an international problem of social, political, legal and human rights significance. Yet few studies have attempted to understand this problem from the perspective of male perpetrators. This gap is addressed by conducting in-depth interviews with 16 able-bodied men of white European ancestry born and educated in New Zealand or Australia, who have been physically violent and/or emotionally, intellectually, sexually or financially controlling of a live-in female partner. This thesis extends and deepens the dominant ways of thinking about men’s intimate partner abuse by utilising a new theoretical framework compatible with contemporary feminist scholarship. A synthesis of Connell’s theory of masculinities and Bourdieu’s field theory is utilised for the purpose of exploring more nuanced, complex understandings of manliness and men’s relationships with men, women and social structures. Through such an analysis, this thesis finds that men’s perpetration of power and control over women is driven by a need to avoid the stigma of appearing weak. As a consequence, their desire and ability to show love, care and empathy is suppressed in favour of a presumed honourable manliness, and their female partners are used as weapons in the pursuit of symbolic capital in the form of recognition, prestige and acceptance from real and/or imagined men. This research also uncovers the complex interplay between masculine practices and particular social contexts. For example, the norms of practice encountered from those in authority, such as teachers, sports coaches, police, court judges and workplace management, influences the decision making of the men in this study, to use, or not to use, physical violence, psychological abuse and structural control. The principal conclusion is that there is a repertoire of paradoxical masculinities and contradictory social messages available to the men in this study. But gender policing by other men, complicit women and those in authority provides little room for legitimate complexity in masculine practices. Perpetrators in this study reconcile these conflicts of interest by generally avoiding subordinated masculinity and possible ostracism, and instead practicing more heroic hegemonic masculinities by abusing and controlling women and particular other men. This thesis concludes that for intimate partner abuse and control to cease, changes in power structures have to occur at all levels of society.
Resumo:
Under certain circumstances, an industrial hopper which operates under the "funnel-flow" regime can be converted to the "mass-flow" regime with the addition of a flow-corrective insert. This paper is concerned with calculating granular flow patterns near the outlet of hoppers that incorporate a particular type of insert, the cone-in-cone insert. The flow is considered to be quasi-static, and governed by the Coulomb-Mohr yield condition together with the non-dilatant double-shearing theory. In two dimensions, the hoppers are wedge-shaped, and as such the formulation for the wedge-in-wedge hopper also includes the case of asymmetrical hoppers. A perturbation approach, valid for high angles of internal friction, is used for both two-dimensional and axially symmetric flows, with analytic results possible for both leading order and correction terms. This perturbation scheme is compared with numerical solutions to the governing equations, and is shown to work very well for angles of internal friction in excess of 45 degree.
Resumo:
A simple phenomenological model for the relationship between structure and composition of the high Tc cuprates is presented. The model is based on two simple crystal chemistry principles: unit cell doping and charge balance within unit cells. These principles are inspired by key experimental observations of how the materials accommodate large deviations from stoichiometry. Consistent explanations for significant HTSC properties can be explained without any additional assumptions while retaining valuable insight for geometric interpretation. Combining these two chemical principles with a review of Crystal Field Theory (CFT) or Ligand Field Theory (LFT), it becomes clear that the two oxidation states in the conduction planes (typically d8 and d9) belong to the most strongly divergent d-levels as a function of deformation from regular octahedral coordination. This observation offers a link to a range of coupling effects relating vibrations and spin waves through application of Hund’s rules. An indication of this model’s capacity to predict physical properties for HTSC is provided and will be elaborated in subsequent publications. Simple criteria for the relationship between structure and composition in HTSC systems may guide chemical syntheses within new material systems.
Resumo:
A novel approach to large-scale production of high-quality graphene flakes in magnetically-enhanced arc discharges between carbon electrodes is reported. A non-uniform magnetic field is used to control the growth and deposition zones, where the Y-Ni catalyst experiences a transition to the ferromagnetic state, which in turn leads to the graphene deposition in a collection area. The quality of the produced material is characterized by the SEM, TEM, AFM, and Raman techniques. The proposed growth mechanism is supported by the nucleation and growth model.
Resumo:
The unique properties of graphene and carbon nanotubes made them the most promising nanomaterials attracting enormous attention, due to the prospects for applications in various nanodevices, from nanoelectronics to sensors and energy conversion devices. Here we report on a novel deterministic, single-step approach to simultaneous production and magnetic separation of graphene flakes and carbon nanotubes in an arc discharge by splitting the high-temperature growth and low-temperature separation zones using a non-uniform magnetic field and tailor-designed catalyst alloy, and depositing nanotubes and graphene in different areas. Our results are very relevant to the development of commercially-viable, single-step production of bulk amounts of high-quality graphene.
Resumo:
Background: Magnetic resonance diffusion tensor imaging (DTI) shows promise in the early detection of microstructural pathophysiological changes in the brain. Objectives: To measure microstructural differences in the brains of participants with amnestic mild cognitive impairment (MCI) compared with an age-matched control group using an optimised DTI technique with fully automated image analysis tools and to investigate the correlation between diffusivity measurements and neuropsychological performance scores across groups. Methods: 34 participants (17 participants with MCI, 17 healthy elderly adults) underwent magnetic resonance imaging (MRI)-based DTI. To control for the effects of anatomical variation, diffusion images of all participants were registered to standard anatomical space. Significant statistical differences in diffusivity measurements between the two groups were determined on a pixel-by-pixel basis using gaussian random field theory. Results: Significantly raised mean diffusivity measurements (p<0.001) were observed in the left and right entorhinal cortices (BA28), posterior occipital-parietal cortex (BA18 and BA19), right parietal supramarginal gyrus (BA40) and right frontal precentral gyri (BA4 and BA6) in participants with MCI. With respect to fractional anisotropy, participants with MCI had significantly reduced measurements (p<0.001) in the limbic parahippocampal subgyral white matter, right thalamus and left posterior cingulate. Pearson's correlation coefficients calculated across all participants showed significant correlations between neuropsychological assessment scores and regional measurements of mean diffusivity and fractional anisotropy. Conclusions: DTI-based diffusivity measures may offer a sensitive method of detecting subtle microstructural brain changes associated with preclinical Alzheimer's disease.