411 resultados para Memory-based

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is an increased interest on the use of UAVs for environmental research and to track bush fire plumes, volcanic plumes or pollutant sources. The aim of this paper is to describe the theory and results of a bio-inspired plume tracking algorithm. A memory based and gradient based approach, were developed and compared. A method for generating sparse plumes was also developed. Results indicate the ability of the algorithms to track plumes in 2D and 3D.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes an extended case-based reasoning model that addresses the notion of situatedness in designing through constructive memory. The model is illustrated through an application for predicting the corrosion rate for a specific material on a specific building.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The generation of a correlation matrix for set of genomic sequences is a common requirement in many bioinformatics problems such as phylogenetic analysis. Each sequence may be millions of bases long and there may be thousands of such sequences which we wish to compare, so not all sequences may fit into main memory at the same time. Each sequence needs to be compared with every other sequence, so we will generally need to page some sequences in and out more than once. In order to minimize execution time we need to minimize this I/O. This paper develops an approach for faster and scalable computing of large-size correlation matrices through the maximal exploitation of available memory and reducing the number of I/O operations. The approach is scalable in the sense that the same algorithms can be executed on different computing platforms with different amounts of memory and can be applied to different bioinformatics problems with different correlation matrix sizes. The significant performance improvement of the approach over previous work is demonstrated through benchmark examples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Throughout a lifetime of operation, a mobile service robot needs to acquire, store and update its knowledge of a working environment. This includes the ability to identify and track objects in different places, as well as using this information for interaction with humans. This paper introduces a long-term updating mechanism, inspired by the modal model of human memory, to enable a mobile robot to maintain its knowledge of a changing environment. The memory model is integrated with a hybrid map that represents the global topology and local geometry of the environment, as well as the respective 3D location of objects. We aim to enable the robot to use this knowledge to help humans by suggesting the most likely locations of specific objects in its map. An experiment using omni-directional vision demonstrates the ability to track the movements of several objects in a dynamic environment over an extended period of time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both clinical practice and clinical research settings can require successive administrations of a memory test, particularly when following the trajectory of suspected memory decline in older adults. However, relatively few verbal episodic memory tests have alternative forms. We set out to create a broad based memory test to allow for the use of an essentially unlimited number of alternative forms. Four tasks for inclusion in such a test were developed. These tasks varied the requirement for recall as opposed to recognition, the need to form an association between unrelated words, and the need to discriminate the most recent list from earlier lists, all of which proved useful. A total of 115 participants completed the battery of tests and were used to show that the test could differentiate between older and younger adults; a sub-sample of 73 participants completed alternative forms of the tests to determine test-retest reliability and the amount of learning to learn.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Financial processes may possess long memory and their probability densities may display heavy tails. Many models have been developed to deal with this tail behaviour, which reflects the jumps in the sample paths. On the other hand, the presence of long memory, which contradicts the efficient market hypothesis, is still an issue for further debates. These difficulties present challenges with the problems of memory detection and modelling the co-presence of long memory and heavy tails. This PhD project aims to respond to these challenges. The first part aims to detect memory in a large number of financial time series on stock prices and exchange rates using their scaling properties. Since financial time series often exhibit stochastic trends, a common form of nonstationarity, strong trends in the data can lead to false detection of memory. We will take advantage of a technique known as multifractal detrended fluctuation analysis (MF-DFA) that can systematically eliminate trends of different orders. This method is based on the identification of scaling of the q-th-order moments and is a generalisation of the standard detrended fluctuation analysis (DFA) which uses only the second moment; that is, q = 2. We also consider the rescaled range R/S analysis and the periodogram method to detect memory in financial time series and compare their results with the MF-DFA. An interesting finding is that short memory is detected for stock prices of the American Stock Exchange (AMEX) and long memory is found present in the time series of two exchange rates, namely the French franc and the Deutsche mark. Electricity price series of the five states of Australia are also found to possess long memory. For these electricity price series, heavy tails are also pronounced in their probability densities. The second part of the thesis develops models to represent short-memory and longmemory financial processes as detected in Part I. These models take the form of continuous-time AR(∞) -type equations whose kernel is the Laplace transform of a finite Borel measure. By imposing appropriate conditions on this measure, short memory or long memory in the dynamics of the solution will result. A specific form of the models, which has a good MA(∞) -type representation, is presented for the short memory case. Parameter estimation of this type of models is performed via least squares, and the models are applied to the stock prices in the AMEX, which have been established in Part I to possess short memory. By selecting the kernel in the continuous-time AR(∞) -type equations to have the form of Riemann-Liouville fractional derivative, we obtain a fractional stochastic differential equation driven by Brownian motion. This type of equations is used to represent financial processes with long memory, whose dynamics is described by the fractional derivative in the equation. These models are estimated via quasi-likelihood, namely via a continuoustime version of the Gauss-Whittle method. The models are applied to the exchange rates and the electricity prices of Part I with the aim of confirming their possible long-range dependence established by MF-DFA. The third part of the thesis provides an application of the results established in Parts I and II to characterise and classify financial markets. We will pay attention to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Exchange (NASDAQ) and the Toronto Stock Exchange (TSX). The parameters from MF-DFA and those of the short-memory AR(∞) -type models will be employed in this classification. We propose the Fisher discriminant algorithm to find a classifier in the two and three-dimensional spaces of data sets and then provide cross-validation to verify discriminant accuracies. This classification is useful for understanding and predicting the behaviour of different processes within the same market. The fourth part of the thesis investigates the heavy-tailed behaviour of financial processes which may also possess long memory. We consider fractional stochastic differential equations driven by stable noise to model financial processes such as electricity prices. The long memory of electricity prices is represented by a fractional derivative, while the stable noise input models their non-Gaussianity via the tails of their probability density. A method using the empirical densities and MF-DFA will be provided to estimate all the parameters of the model and simulate sample paths of the equation. The method is then applied to analyse daily spot prices for five states of Australia. Comparison with the results obtained from the R/S analysis, periodogram method and MF-DFA are provided. The results from fractional SDEs agree with those from MF-DFA, which are based on multifractal scaling, while those from the periodograms, which are based on the second order, seem to underestimate the long memory dynamics of the process. This highlights the need and usefulness of fractal methods in modelling non-Gaussian financial processes with long memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we investigate an alternative bootstrap approach based on a result of Ramsey [F.L. Ramsey, Characterization of the partial autocorrelation function, Ann. Statist. 2 (1974), pp. 1296-1301] and on the Durbin-Levinson algorithm to obtain a surrogate series from linear Gaussian processes with long range dependence. We compare this bootstrap method with other existing procedures in a wide Monte Carlo experiment by estimating, parametrically and semi-parametrically, the memory parameter d. We consider Gaussian and non-Gaussian processes to prove the robustness of the method to deviations from normality. The approach is also useful to estimate confidence intervals for the memory parameter d by improving the coverage level of the interval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional approaches to joint control required accurate modelling of the system dynamic of the plant in question. Fuzzy Associative Memory (FAM) control schemes allow adequate control without a model of the system to be controlled. This paper presents a FAM based joint controller implemented on a humanoid robot. An empirically tuned PI velocity control loop is augmented with this feed forward FAM, with considerable reduction in joint position error achieved online and with minimal additional computational overhead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ad hoc networks are vulnerable to attacks due to distributed nature and lack of infrastructure. Intrusion detection systems (IDS) provide audit and monitoring capabilities that offer the local security to a node and help to perceive the specific trust level of other nodes. The clustering protocols can be taken as an additional advantage in these processing constrained networks to collaboratively detect intrusions with less power usage and minimal overhead. Existing clustering protocols are not suitable for intrusion detection purposes, because they are linked with the routes. The route establishment and route renewal affects the clusters and as a consequence, the processing and traffic overhead increases due to instability of clusters. The ad hoc networks are battery and power constraint, and therefore a trusted monitoring node should be available to detect and respond against intrusions in time. This can be achieved only if the clusters are stable for a long period of time. If the clusters are regularly changed due to routes, the intrusion detection will not prove to be effective. Therefore, a generalized clustering algorithm has been proposed that can run on top of any routing protocol and can monitor the intrusions constantly irrespective of the routes. The proposed simplified clustering scheme has been used to detect intrusions, resulting in high detection rates and low processing and memory overhead irrespective of the routes, connections, traffic types and mobility of nodes in the network. Clustering is also useful to detect intrusions collaboratively since an individual node can neither detect the malicious node alone nor it can take action against that node on its own.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software transactional memory has the potential to greatly simplify development of concurrent software, by supporting safe composition of concurrent shared-state abstractions. However, STM semantics are defined in terms of low-level reads and writes on individual memory locations, so implementations are unable to take advantage of the properties of user-defined abstractions. Consequently, the performance of transactions over some structures can be disappointing. ----- ----- We present Modular Transactional Memory, our framework which allows programmers to extend STM with concurrency control algorithms tailored to the data structures they use in concurrent programs. We describe our implementation in Concurrent Haskell, and two example structures: a finite map which allows concurrent transactions to operate on disjoint sets of keys, and a non-deterministic channel which supports concurrent sources and sinks. ----- ----- Our approach is based on previous work by others on boosted and open-nested transactions, with one significant development: transactions are given types which denote the concurrency control algorithms they employ. Typed transactions offer a higher level of assurance for programmers reusing transactional code, and allow more flexible abstract concurrency control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates virtual reality representations of performance in London’s late sixteenth-century Rose Theatre, a venue that, by means of current technology, can once again challenge perceptions of space, performance, and memory. The VR model of The Rose becomes a Camillo device in that it represents a virtual recreation of this venue in as much detail as possible and attempts to recover graphic demonstrations of the trace memories of the performance modes of the day. The VR model is based on accurate archeological and theatre historical records and is easy to navigate. The introduction of human figures onto The Rose’s stage via motion capture allows us to explore the relationships between space, actor and environment. The combination of venue and actors facilitates a new way of thinking about how the work of early modern playwrights can be stored and recalled. This virtual theatre is thus activated to intersect productively with contemporary studies in performance; as such, our paper provides a perspective on and embodiment of the relation between technology, memory and experience. It is, at its simplest, a useful archiving project for theatrical history, but it is directly relevant to contemporary performance practice as well. Further, it reflects upon how technology and ‘re-enactments’ of sorts mediate the way in which knowledge and experience are transferred, and even what may be considered ‘knowledge.’ Our work provides opportunities to begin addressing what such intermedial confrontations might produce for ‘remembering, experiencing, thinking and imagining.’ We contend that these confrontations will enhance live theatre performance rather than impeding or disrupting contemporary performance practice. This paper intersects with the CFP’s ‘Performing Memory’ and ‘Memory Lab’ themes. Our presentation (which includes a demonstration of the VR model and the motion capture it requires) takes the form of two closely linked papers that share a single abstract. The two papers will be given by two people, one of whom will be physically present in Utrecht, the other participating via Skype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As computers approach the physical limits of information storable in memory, new methods will be needed to further improve information storage and retrieval. We propose a quantum inspired vector based approach, which offers a contextually dependent mapping from the subsymbolic to the symbolic representations of information. If implemented computationally, this approach would provide exceptionally high density of information storage, without the traditionally required physical increase in storage capacity. The approach is inspired by the structure of human memory and incorporates elements of Gardenfors’ Conceptual Space approach and Humphreys et al.’s matrix model of memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Appearance-based localization can provide loop closure detection at vast scales regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale not only with the size of the environment but also with the operation time of the platform. Additionally, repeated visits to locations will develop multiple competing representations, which will reduce recall performance over time. These properties impose severe restrictions on long-term autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. In this paper we present a graphical extension to CAT-SLAM, a particle filter-based algorithm for appearance-based localization and mapping, to provide constant computation and memory requirements over time and minimal degradation of recall performance during repeated visits to locations. We demonstrate loop closure detection in a large urban environment with capped computation time and memory requirements and performance exceeding previous appearance-based methods by a factor of 2. We discuss the limitations of the algorithm with respect to environment size, appearance change over time and applications in topological planning and navigation for long-term robot operation.