83 resultados para Machinery, Dynamics of

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of a recent study have shown that there is a severe shortage of donor hearts to meet the demand of patients suffering from acute heart failures, and patients who received a left ventricular assist device (LVAD) have extended lives. However, some of them develop right heart failure syndrome, and these patients required a right ventricular assist device (RVAD). Hence, current research focus is in the development of a bi-ventricular assist device (Bi-VAD). Computational Fluid Dynamics (CFD) is useful for estimating blood damage for design of a Bi-VAD centrifugal heart pump to meet the demand of the left and right ventricles of a normal hearts with a flow rate of 5 lit/min and the supply pressure of 100 mmHg for the left ventricle and 20 mmHg for the right ventricle. Numerical studies have been conducted to predict pressure, flow rate, the velocity profiles, and streamlines in a continuous flow Bi-VAD using. Based on the predictions of numerical simulations, only few flow regions in the Bi-VAD exhibited signs of velocity profiles and stagnation points, thereby signifying potentially low levels of thrombogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The roles and responsibilities of school leaders in most countries across the world have become more complex and challenging in recent years. In large part, this complexity has resulted from the discontinuously changing contexts and day-to-day dynamics within which principals lead their schools. Indeed, principals are now faced with having to make a plethora of decisions in an environment of competing priorities, and with consideration for the interests of students, teachers, parents and the school and wider community. Many of these decisions present as dilemmas for school leaders, where the choices for action often involve not just choosing from ‘right’ versus ‘wrong’ alternatives but also frequently from ‘right’ versus ‘right’ alternatives (Kidder, 1995). Underlying many such decisions are issues of values, principles and ethics. Dilemmas of an ethical nature arise such that principals enter a complicated ‘minefield’ of decision-making (Dempster & Berry, 2003) where significant implications results not only for those at the core of the particular decisions but also potentially for the wider school community and beyond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although previous work in nonlinear dynamics on neurobiological coordination and control has provided valuable insights from studies of single joint movements in humans, researchers have shown increasing interest in coordination of multi-articular actions. Multi-articular movement models have provided valuable insights on neurobiological systems conceptualised as degenerate, adaptive complex systems satisfying the constraints of dynamic environments. In this paper, we overview empirical evidence illustrating the dynamics of adaptive movement behavior in a range of multi-articular actions including kicking, throwing, hitting and balancing. We model the emergence of creativity and the diversity of neurobiological action in the meta-stable region of self organising criticality. We examine the influence on multi-articular actions of decaying and emerging constraints in the context of skill acquisition. We demonstrate how, in this context, transitions between preferred movement patterns exemplify the search for and adaptation of attractor states within the perceptual motor workspace as a function of practice. We conclude by showing how empirical analyses of neurobiological coordination and control have been used to establish a nonlinear pedagogical framework for enhancing acquisition of multi-articular actions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the region of self-organized criticality (SOC) interdependency between multi-agent system components exists and slight changes in near-neighbor interactions can break the balance of equally poised options leading to transitions in system order. In this region, frequency of events of differing magnitudes exhibits a power law distribution. The aim of this paper was to investigate whether a power law distribution characterized attacker-defender interactions in team sports. For this purpose we observed attacker and defender in a dyadic sub-phase of rugby union near the try line. Videogrammetry was used to capture players’ motion over time as player locations were digitized. Power laws were calculated for the rate of change of players’ relative position. Data revealed that three emergent patterns from dyadic system interactions (i.e., try; unsuccessful tackle; effective tackle) displayed a power law distribution. Results suggested that pattern forming dynamics dyads in rugby union exhibited SOC. It was concluded that rugby union dyads evolve in SOC regions suggesting that players’ decisions and actions are governed by local interactions rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Braking or traction torque is regarded as an important source of wheelset skid and a potential source of derailment risk that adversely affects the safety levels of train operations; therefore, this research examines the effect of braking/traction torque to the longitudinal and lateral dynamics of wagons. This paper reports how train operations safety could be adversely affected due to various braking strategies. Sensitivity of wagon dynamics to braking severity is illustrated through numerical examples. The influence of wheel/rail interface friction coefficient and the effects of two types of track geometry defects on wheel unloading ratio and wagon pitch are also discussed in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research on particle size distributions and particle concentrations near a busy road cannot be explained by the conventional mechanisms for particle evolution of combustion aerosols. Specifically they appear to be inadequate to explain the experimental observations of particle transformation and the evolution of the total number concentration. This resulted in the development of a new mechanism based on their thermal fragmentation, for the evolution of combustion aerosol nano-particles. A complex and comprehensive pattern of evolution of combustion aerosols, involving particle fragmentation, was then proposed and justified. In that model it was suggested that thermal fragmentation occurs in aggregates of primary particles each of which contains a solid graphite/carbon core surrounded by volatile molecules bonded to the core by strong covalent bonds. Due to the presence of strong covalent bonds between the core and the volatile (frill) molecules, such primary composite particles can be regarded as solid, despite the presence of significant (possibly, dominant) volatile component. Fragmentation occurs when weak van der Waals forces between such primary particles are overcome by their thermal (Brownian) motion. In this work, the accepted concept of thermal fragmentation is advanced to determine whether fragmentation is likely in liquid composite nano-particles. It has been demonstrated that at least at some stages of evolution, combustion aerosols contain a large number of composite liquid particles containing presumably several components such as water, oil, volatile compounds, and minerals. It is possible that such composite liquid particles may also experience thermal fragmentation and thus contribute to, for example, the evolution of the total number concentration as a function of distance from the source. Therefore, the aim of this project is to examine theoretically the possibility of thermal fragmentation of composite liquid nano-particles consisting of immiscible liquid v components. The specific focus is on ternary systems which include two immiscible liquid droplets surrounded by another medium (e.g., air). The analysis shows that three different structures are possible, the complete encapsulation of one liquid by the other, partial encapsulation of the two liquids in a composite particle, and the two droplets separated from each other. The probability of thermal fragmentation of two coagulated liquid droplets is discussed and examined for different volumes of the immiscible fluids in a composite liquid particle and their surface and interfacial tensions through the determination of the Gibbs free energy difference between the coagulated and fragmented states, and comparison of this energy difference with the typical thermal energy kT. The analysis reveals that fragmentation was found to be much more likely for a partially encapsulated particle than a completely encapsulated particle. In particular, it was found that thermal fragmentation was much more likely when the volume ratio of the two liquid droplets that constitute the composite particle are very different. Conversely, when the two liquid droplets are of similar volumes, the probability of thermal fragmentation is small. It is also demonstrated that the Gibbs free energy difference between the coagulated and fragmented states is not the only important factor determining the probability of thermal fragmentation of composite liquid particles. The second essential factor is the actual structure of the composite particle. It is shown that the probability of thermal fragmentation is also strongly dependent on the distance that each of the liquid droplets should travel to reach the fragmented state. In particular, if this distance is larger than the mean free path for the considered droplets in the air, the probability of thermal fragmentation should be negligible. In particular, it follows form here that fragmentation of the composite particle in the state with complete encapsulation is highly unlikely because of the larger distance that the two droplets must travel in order to separate. The analysis of composite liquid particles with the interfacial parameters that are expected in combustion aerosols demonstrates that thermal fragmentation of these vi particles may occur, and this mechanism may play a role in the evolution of combustion aerosols. Conditions for thermal fragmentation to play a significant role (for aerosol particles other than those from motor vehicle exhaust) are determined and examined theoretically. Conditions for spontaneous transformation between the states of composite particles with complete and partial encapsulation are also examined, demonstrating the possibility of such transformation in combustion aerosols. Indeed it was shown that for some typical components found in aerosols that transformation could take place on time scales less than 20 s. The analysis showed that factors that influenced surface and interfacial tension played an important role in this transformation process. It is suggested that such transformation may, for example, result in a delayed evaporation of composite particles with significant water component, leading to observable effects in evolution of combustion aerosols (including possible local humidity maximums near a source, such as a busy road). The obtained results will be important for further development and understanding of aerosol physics and technologies, including combustion aerosols and their evolution near a source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on expertise, talent identification and development has tended to be mono-disciplinary, typically adopting adopting neurogenetic deterministic or environmentalist positions, with an over-riding focus on operational issues. In this paper the validity of dualist positions on sport expertise is evaluated. It is argued that, to advance understanding of expertise and talent development, a shift towards a multi-disciplinary and integrative science focus is necessary, along with the development of a comprehensive multi-disciplinary theoretical rationale. Here we elucidate dynamical systems theory as a multi-disciplinary theoretical rationale for capturing how multiple interacting constraints can shape the development of expert performers. This approach suggests that talent development programmes should eschew the notion of common optimal performance models, emphasise the individual nature of pathways to expertise, and identify the range of interacting constraints that impinge on performance potential of individual athletes, rather than evaluating current performance on physical tests referenced to group norms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Up front I am impelled to acknowledge an intellectual debt to Raewyn Connell as one of my PhD supervisors about 20 years ago and as having a lasting influence on my own sociological approach to research. One of key themes of this book is that southern theorists are rarely read in the northern hemisphere. This is not the case for Connell, however, one of Australia’s most internationally renowned scholars. The tome reads as the creative outpouring of her lifelong thirst for social science. Its main claim is that southern theory ‘has as much intellectual power as metropolitan social thought, and more political relevance’ (p. xii). A big but compelling claim, as I will explain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing use of biodegradable devices in tissue engineering and regenerative medicine means it is essential to study and understand their degradation behaviour. Accelerated degradation systems aim to achieve similar degradation profiles within a shorter period of time, compared with standard conditions. However, these conditions only partially mimic the actual situation, and subsequent analyses and derived mechanisms must be treated with caution and should always be supported by actual long-term degradation data obtained under physiological conditions. Our studies revealed that polycaprolactone (PCL) and PCL-composite scaffolds degrade very differently under these different degradation conditions, whilst still undergoing hydrolysis. Molecular weight and mass loss results differ due to the different degradation pathways followed (surface degradation pathway for accelerated conditions and bulk degradation pathway for simulated physiological conditions). Crystallinity studies revealed similar patterns of recrystallization dynamics, and mechanical data indicated that the scaffolds retained their functional stability, in both instances, over the course of degradation. Ultimately, polymer degradation was shown to be chiefly governed by molecular weight, crystallinity susceptibility to hydrolysis and device architecture considerations whilst maintaining its thermodynamic equilibrium.