60 resultados para MAGNESIUM-CHLORIDE

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aluminate hydrotalcites are proposed to have either of the following formulas: Mg4Al2(OH)12(CO3 2-)·xH2O or Mg4Al2(OH)12(CO3 2-, SO4 2-)·xH2O. A pure hydrotalcite phase forms when magnesium chloride and aluminate solns. are mixed at a 1:1 volumetric ratio at pH 14. The synthesis of the aluminate hydrotalcites using seawater results in the formation of an impurity phase bayerite. Two decompn. steps have been identified for the aluminate hydrotalcites: (1) removal of interlayer water (230 °C) and (2) simultaneous dehydroxylation and decarbonation (330 °C).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Raman spectroscopy has been used to characterise nine hydrotalcites prepared from aluminate and magnesium solutions (magnesium chloride and seawater). The aluminate hydrotalcites are proposed to have the following formula Mg6Al2(OH)16(CO32-).xH2O, Mg6Al2(OH)16(CO32-,SO42-).xH2O, and Mg6Al2(OH)16(SO42-).xH2O. The synthesis of these hydrotalcites using seawater results in the intercalation of sulfate anions into the hydrotalcite interlayer. The spectra have been used to assess the molecular assembly of the cations and anions in the hydrotalcite structures. The spectra have been conveniently subdivided into spectral features based upon the carbonate anion, the hydroxyl units and water units. This investigation has shown the ideal conditions to form hydrotalcite from aluminate solutions is at pH 14 using magnesium chloride. Changes in synthesis conditions resulted in the formation of impurity products aragonite, thenardite, and gypsum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bauxite refinery residues (red mud) are derived from the Bayer process by the digestion of crushed bauxite in concentrated sodium hydroxide at elevated temperatures and pressures. This slurry residue, if untreated, is unsuitable for discharge directly into the environment and is usually stored in tailing dams. The liquid portion has the potential for discharge, but requires pre-treatment before this can occur. The seawater neutralisation treatment facilitates a significant reduction in pH and dissolved metal concentrations, through the precipitation of hydrotalcite-like compounds and some other Mg, Ca, and Al hydroxide and carbonate minerals. The hydrotalcite-like compounds, precipitated during seawater neutralisation, also remove a range of transition metals, oxy-anions and other anionic species through a combination of intercalation and adsorption reactions: smaller anions are intercalated into the hydrotalcite matrix, while larger molecules are adsorbed on the particle surfaces. A phenomenon known as ‘reversion’ can occur if the seawater neutralisation process is not properly controlled. Reversion causes an increase in the pH and dissolved impurity levels of the neutralised effluent, rendering it unsuitable for discharge. It is believed that slow dissolution of components of the red mud residue and compounds formed during the neutralisation process are responsible for reversion. This investigation looked at characterising natural hydrotalcite (Mg6Al2(OH)16(CO3)∙4H2O) and ‘Bayer’ hydrotalcite (synthesised using the seawater neutralisation process) using a variety of techniques including X-ray diffraction, infrared and Raman spectroscopy, and thermogravimetric analysis. This investigation showed that Bayer hydrotalcite is comprised of a mixture of 3:1 and 4:1 hydrotalcite structures and exhibited similar chemical characteristic to the 4:1 synthetic hydrotalcite. Hydrotalcite formed from the seawater neutralisation of Bauxite refinery residues has been found not to cause reversion. Other components in red mud were investigated to determine the cause of reversion and this investigation found three components that contributed to reversion: 1) tricalcium aluminate, 2) hydrocalumite and 3) calcium hydroxide. Increasing the amount of magnesium in the neutralisation process has been found to be successful in reducing reversion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The removal of the sulfate anion from water using synthetic hydrotalcite (Mg/Al LDH) was investigated using powder x-ray diffraction (XRD) and thermogravimetric analysis (TG). Synthetic hydrotalcite Mg6Al2(OH)16(CO3)∙4H2O was prepared by the co-precipitation method from aluminum and magnesium chloride salts. The synthetic hydrotalcite was thermally activated to a maximum temperature of 380°C. Samples of thermally activated hydrotalcite where then treated with aliquots of 1000ppm sulfate solution. The resulting products where dried and characterized by XRD and TG. Powder XRD revealed that hydrotalcite had been successfully prepared and that the product obtained after treatment with sulfate solution also conformed well to the reference pattern of hydrotalcite. The d(003) spacing of all samples was found to be within the acceptable region for a LDH structure. TG revealed all products underwent a similar decomposition to that of hydrotalcite. It was possible to propose a reasonable mechanism for the thermal decomposition of a sulfate containing Mg/Al LDH. The similarities in the results may indicate that the reformed hydrotalcite may contain carbonate anion as well as sulfate. Further investigation is required to confirm this.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tricalcium aluminate, hydrocalumite and residual lime have been identified as reversion contributing compounds after the seawater neutralisation of bauxite refinery residues. The formation of these compounds during the neutralisation process is dependent on the concentration of residual lime, pH and aluminate concentrations in the residue slurry. Therefore, the effect of calcium hydroxide (CaOH2) in bauxite refinery liquors was analysed and the degree of reversion monitored. This investigation found that the dissolution of tricalcium aluminate, hydrocalumite and CaOH2 caused reversion and continued to increase the pH of the neutralised residue until a state of equilibrium was reached at a solution pH of 10.5. The dissolution mechanism for each compound has been described and used to demonstrate the implications that this has on reversion in seawater neutralised Bayer liquor. This investigation describes the limiting factors for the dissolution and formation of these trigger compounds as well as confirming the formation of Bayer hydrotalcite (mixture of Mg6Al2(OH)16(CO32-,SO42-)•xH2O and Mg8Al2(OH)12(CO32-,SO42-)•xH2O) as the primary mechanism for reducing reversion during the neutralisation process. This knowledge then allowed for a simple but effective method (addition of magnesium chloride or increased seawater to Bayer liquor ratio) to be devised to reduce reversion occurring after the neutralisation of Bayer liquors. Both methods utilise the formation of Bayer hydrotalcite to permanently (stable in neutralised residue) remove hydroxyl (OH-) and aluminate (Al(OH)4-) ions from solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of Raman spectroscopy to the study of the copper chloride minerals nantokite, eriochalcite and claringbullite has enabled the vibrational modes for the CuCl, CuOH and CuOH2 to be determined. Nantokite is characterised by bands at 205 and 155 cm-1 attributed to the transverse and longitudinal optic vibrations. Nantokite also has an intense band at 463 cm-1, eriochalcite at 405 and 390 cm-1 and claringbullite at 511 cm-1. These bands are attributed to CuO stretching modes. Water librational bands at around 672 cm-1 for eriochalcite have been identified and hydroxyl deformation modes of claringbullite at 970, 906 and 815 cm-1 are observed. Spectra of the three minerals are so characteristically different that the minerals are readily identified by Raman spectroscopy. The minerals are often determined in copper corrosion products by X-ray diffraction. Raman spectroscopy offers a rapid, in-situ technique for the identification of these corrosion products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium minerals are important in the understanding of the concept of geosequestration. The two hydrated hydroxy magnesium carbonate minerals artinite and dypingite have been studied by Raman spectroscopy. Intense bands are observed at 1092 cm-1 for artinite and at 1120 cm-1 for dypingite attributed CO32- ν1 symmetric stretching mode. The CO32- ν3 antisymmetric stretching vibrations are extremely weak and are observed at1412 and 1465 cm-1 for artinite and at 1366, 1447 and 1524 cm-1 for dypingite. Very weak Raman bands at 790 cm-1 for artinite and 800 cm-1 for dypingite are assigned to the CO32- ν2 out-of-plane bend. The Raman band at 700 cm-1 of artinite and at 725 and 760 cm-1 of dypingite are ascribed to CO32- ν2 in-plane bending mode. The Raman spectrum of artinite in the OH stretching region is characterised by two sets of bands: (a) an intense band at 3593 cm-1 assigned to the MgOH stretching vibrations and (b) the broad profile of overlapping bands at 3030 and 3229 cm-1 attributed to water stretching vibrations. X-ray diffraction studies show the minerals are disordered. This is reflected in the difficulty of obtaining Raman spectra of reasonable quality and explains why the Raman spectra of these minerals have not been previously or sufficiently described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The approach to remove green house gases by pumping liquid CO2 several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals the formation of dypingite and artinite are possible; thus necessitating a study of such minerals. Two carbonate bearing minerals dypingite and artinite with a hydrotalcite related formulae have been characterised by a combination of infrared and near-infrared spectroscopy. The infrared spectra of both minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030 to 7235 cm-1 and 10490 to 10570 cm-1. Intense (CO3)2- symmetric and antisymmetric stretching vibrations confirm the distortion of the carbonate anion. The position of the water bending vibration indicates water is strongly hydrogen bonded to the carbonate anion in the mineral structure. Split NIR bands at around 8675 and 11100 cm-1 indicates that some replacement of magnesium ions by ferrous ions in the mineral structure has occurred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The periosteum plays an indispensable role in both bone formation and bone defect healing. In this study we constructed an artificial in vitro periosteum by incorporating osteogenic differentiated bone marrow stromal cells (BMSCs) and cobalt chloride (CoCl(2))-treated BMSCs. The engineered periostea were implanted both subcutaneously and into skull bone defects in SCID mice to investigate ectopic and orthotopic osteogenesis and vascularization. After two weeks in subcutaneous and four weeks in bone defect areas, the implanted constructs were assessed for ectopic and orthotopic osteogenesis and vascularization by micro-CT, histomorphometrical and immunohistochemical methods. The results showed that CoCl(2) pre-treated BMSCs induced higher degree of vascularization and enhanced osteogenesis within the implants in both ectopic and orthotopic areas. This study provided a novel approach using BMSCs sourced from the same patient for both osteogenic and pro-angiogenic purposes in constructing tissue engineered periosteum to enhance vascularized osteogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater from Maramarua has been identified as coal seam gas (CSG) water by studying its composition, and comparing it against the geochemical signature from other CSG basins. CSG is natural gas that has been produced through thermogenic and biogenic processes in underground coal seams; CSG extraction requires the abstraction of significant amounts of CSG water. To date, no international literature has described coal seam gas water in New Zealand, however recent CSG exploration work has resulted in CSG water quality data from a coal seam in Maramarua, New Zealand. Water quality from this site closely follows the geochemical signature associated with United States CSG waters, and this has helped to characterise the type of water being abstracted. CSG water from this part of Maramarua has low calcium, magnesium, and sulphate concentrations but high sodium (334 mg/l), chloride (146 mg/l) and bicarbonate (435 mg/l) concentrations. In addition, this water has high pH (7.8) and alkalinity (360 mg/l as CaCO3), which is a direct consequence of carbonate dissolution and biogenic processes. Different analyte ratios ('source-rock deduction' method) have helped to identify the different formation processes responsible in shaping Maramarua CSG water

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coal seam gas (CSG) exploration and development requires the abstraction of significant amounts of water. This is so because gas desorbtion in coal seams takes place only after aquifer pressure has been reduced by prolonged pumping of aquifer water. CSG waters have a specific geochemical signature which is a product of their formation process. These waters have high bicarbonate, high sodium, low calcium, low magnesium, and very low sulphate concentrations. Additionally, chloride concentrations may be high depending on the coal depositional environment. This particular signature is not only useful for exploration purposes, but it also highlights potential environmental issues that can arise as a consequence of CSG water disposal. Since 2002 L&M Coal Seam Gas Ltd and CRL Energy Ltd, have been involved in exploration and development of CSG in New Zealand. Anticipating disposal of CSG waters as a key issue in CSG development, they have been assessing CSG water quality along with exploration work. Coal seam gas water samples from an exploration well in Maramarua closely follow the geochemical signature associated with CSG waters. This has helped to identify CSG potential, while at the same time assessing the chemical characteristics and water generation processes in the aquifer. Neutral pH and high alkalinity suggest that these waters could be easily managed once the sodium and chloride concentrations are reduced to acceptable levels.