99 resultados para Localization peak positions
em Queensland University of Technology - ePrints Archive
Resumo:
The effects of small changes in flight-path parameters (primary and secondary flight paths, detector angles), and of displacement of the sample along the beam axis away from its ideal position, are examined for an inelastic time-of-flight (TOF) neutron spectrometer, emphasising the deep-inelastic regime. The aim was to develop a rational basis for deciding what measured shifts in the positions of spectral peaks could be regarded as reliable in the light of the uncertainties in the calibrated flight-path parameters. Uncertainty in the length of the primary or secondary flight path has the least effect on the positions of the peaks of H, D and He, which are dominated by the accuracy of the calibration of the detector angles. This aspect of the calibration of a TOF spectrometer therefore demands close attention to achieve reliable outcomes where the position of the peaks is of significant scientific interest and is discussed in detail. The corresponding sensitivities of the position of peak of the Compton profile, J(y), to flight-path parameters and sample position are also examined, focusing on the comparability across experiments of results for H, D and He. We show that positioning the sample to within a few mm of the ideal position is required to ensure good comparability between experiments if data from detectors at high forward angles are to be reliably interpreted.
Resumo:
The "standard" procedure for calibrating the Vesuvio eV neutron spectrometer at the ISIS neutron source, forming the basis for data analysis over at least the last decade, was recently documented in considerable detail by the instrument’s scientists. Additionally, we recently derived analytic expressions of the sensitivity of recoil peak positions with respect to fight-path parameters and presented neutron–proton scattering results that together called in to question the validity of the "standard" calibration. These investigations should contribute significantly to the assessment of the experimental results obtained with Vesuvio. Here we present new results of neutron–deuteron scattering from D2 in the backscattering angular range (theata > 90 degrees) which are accompanied by a striking energy increase that violates the Impulse Approximation, thus leading unequivocally the following dilemma: (A) either the "standard" calibration is correct and then the experimental results represent a novel quantum dynamical effect of D which stands in blatant contradiction of conventional theoretical expectations; (B) or the present "standard" calibration procedure is seriously deficient and leads to artificial outcomes. For Case(A), we allude to the topic of attosecond quantumdynamical phenomena and our recent neutron scattering experiments from H2 molecules. For Case(B),some suggestions as to how the "standard" calibration could be considerably improved are made.
Resumo:
The Comment by Mayers and Reiter criticizes our work on two counts. Firstly, it is claimed that the quantum decoherence effects that we report in consequence of our experimental analysis of neutron Compton scattering from H in gaseous H2 are not, as we maintain, outside the framework of conventional neutron scatteringtheory. Secondly, it is claimed that we did not really observe such effects, owing to a faulty analysis of the experimental data, which are claimed to be in agreement with conventional theory. We focus in this response on the critical issue of the reliability of our experimental results and analysis. Using the same standard Vesuvio instrument programs used by Mayers et al., we show that, if the experimental results for H in gaseous H2 are in agreement with conventional theory, then those for D in gaseous D2 obtained in the same way cannot be, and vice-versa. We expose a flaw in the calibration methodology used by Mayers et al. that leads to the present disagreement over the behaviour of H, namely the ad hoc adjustment of the measured H peak positions in TOF during the calibration of Vesuvio so that agreement is obtained with the expectation of conventional theory. We briefly address the question of the necessity to apply the theory of open quantum systems.
Resumo:
Micrometre-sized MgB2 crystals of varying quality, synthesized at low temperature and autogeneous pressure, are compared using a combination of Raman and Infra-Red (IR) spectroscopy. These data, which include new peak positions in both spectroscopies for high quality MgB2, are interpreted using DFT calculations on phonon behaviour for symmetry-related structures. Raman and IR activity additional to that predicted by point group analyses of the P6/mmm symmetry are detected. These additional peaks, as well as the overall shapes of calculated phonon dispersion (PD) models are explained by assuming a double super-lattice, consistent with a lower symmetry structure for MgB2. A 2x super-lattice in the c-direction allows a simple correlation of the pair breaking energy and the superconducting gap by activation of corresponding acoustic frequencies. A consistent physical interpretation of these spectra is obtained when the position of a phonon anomaly defines a super-lattice modulation in the a-b plane.
Resumo:
In a previous study we found evidence for an X-linked genetic component for familial typical migraine in two large Australian white pedigrees, designated MF7 and MF14. Significant excess allele sharing was indicated by nonparametric linkage (NPL) analysis using GENEHUNTER (P=0.031 and P=0.012, respectively), with a combined analysis of the two pedigrees showing further increased evidence for linkage, producing a maximum NPL score of 2.87 (P=0.011 ) at DXS 1123 on Xq27. The present study was aimed at refining the localization of the migraine X-chromosomal component by typing additional markers, performing haplotype analysis and applying a more powerful technique in the analysis of linkage data from these two pedigrees. Results from the haplotype analyses, coupled with linkage analyses that produced a peak GENEHUNTER-PLUS LOD* score of 2.388 (P=0.0005), provide compelling evidence for the presence of a migraine susceptibility locus on chromosome Xq24-28.
Resumo:
Disjoint top-view networked cameras are among the most commonly utilized networks in many applications. One of the open questions for these cameras' study is the computation of extrinsic parameters (positions and orientations), named extrinsic calibration or localization of cameras. Current approaches either rely on strict assumptions of the object motion for accurate results or fail to provide results of high accuracy without the requirement of the object motion. To address these shortcomings, we present a location-constrained maximum a posteriori (LMAP) approach by applying known locations in the surveillance area, some of which would be passed by the object opportunistically. The LMAP approach formulates the problem as a joint inference of the extrinsic parameters and object trajectory based on the cameras' observations and the known locations. In addition, a new task-oriented evaluation metric, named MABR (the Maximum value of All image points' Back-projected localization errors' L2 norms Relative to the area of field of view), is presented to assess the quality of the calibration results in an indoor object tracking context. Finally, results herein demonstrate the superior performance of the proposed method over the state-of-the-art algorithm based on the presented MABR and classical evaluation metric in simulations and real experiments.
Resumo:
This paper presents an approach to mobile robot localization, place recognition and loop closure using a monostatic ultra-wide band (UWB) radar system. The UWB radar is a time-of-flight based range measurement sensor that transmits short pulses and receives reflected waves from objects in the environment. The main idea of the poposed localization method is to treat the received waveform as a signature of place. The resulting echo waveform is very complex and highly depends on the position of the sensor with respect to surrounding objects. On the other hand, the sensor receives similar waveforms from the same positions.Moreover, the directional characteristics of dipole antenna is almost omnidirectional. Therefore, we can localize the sensor position to find similar waveform from waveform database. This paper proposes a place recognitionmethod based on waveform matching, presents a number of experiments that illustrate the high positon estimation accuracy of our UWB radar-based localization system, and shows the resulting loop detection performance in a typical indoor office environment and a forest.
Resumo:
Damage localization induced by strain softening can be predicted by the direct minimization of a global energy function. This article concerns the computational strategy for implementing this principle for softening materials such as concrete. Instead of using heuristic global optimization techniques, our strategies are a hybrid of local optimization methods with a path-finding approach to ensure a global optimum. With admissible nodal displacements being independent variables, it is easy to deal with the geometric (mesh) constraint conditions. The direct search optimization methods recover the localized solutions for a range of softening lattice models which are representative of quasi-brittle structures
Resumo:
To navigate successfully in a previously unexplored environment, a mobile robot must be able to estimate the spatial relationships of the objects of interest accurately. A Simultaneous Localization and Mapping (SLAM) sys- tem employs its sensors to build incrementally a map of its surroundings and to localize itself in the map simultaneously. The aim of this research project is to develop a SLAM system suitable for self propelled household lawnmowers. The proposed bearing-only SLAM system requires only an omnidirec- tional camera and some inexpensive landmarks. The main advantage of an omnidirectional camera is the panoramic view of all the landmarks in the scene. Placing landmarks in a lawn field to define the working domain is much easier and more flexible than installing the perimeter wire required by existing autonomous lawnmowers. The common approach of existing bearing-only SLAM methods relies on a motion model for predicting the robot’s pose and a sensor model for updating the pose. In the motion model, the error on the estimates of object positions is cumulated due mainly to the wheel slippage. Quantifying accu- rately the uncertainty of object positions is a fundamental requirement. In bearing-only SLAM, the Probability Density Function (PDF) of landmark position should be uniform along the observed bearing. Existing methods that approximate the PDF with a Gaussian estimation do not satisfy this uniformity requirement. This thesis introduces both geometric and proba- bilistic methods to address the above problems. The main novel contribu- tions of this thesis are: 1. A bearing-only SLAM method not requiring odometry. The proposed method relies solely on the sensor model (landmark bearings only) without relying on the motion model (odometry). The uncertainty of the estimated landmark positions depends on the vision error only, instead of the combination of both odometry and vision errors. 2. The transformation of the spatial uncertainty of objects. This thesis introduces a novel method for translating the spatial un- certainty of objects estimated from a moving frame attached to the robot into the global frame attached to the static landmarks in the environment. 3. The characterization of an improved PDF for representing landmark position in bearing-only SLAM. The proposed PDF is expressed in polar coordinates, and the marginal probability on range is constrained to be uniform. Compared to the PDF estimated from a mixture of Gaussians, the PDF developed here has far fewer parameters and can be easily adopted in a probabilistic framework, such as a particle filtering system. The main advantages of our proposed bearing-only SLAM system are its lower production cost and flexibility of use. The proposed system can be adopted in other domestic robots as well, such as vacuum cleaners or robotic toys when terrain is essentially 2D.
Resumo:
We determined the foveal Stiles-Crawford effect (SCE) as a function of up to 8D accommodation stimulus in six young emmetropes and six young myopes using a psychophysical two-channel Maxwellian system in which the threshold luminance increment of a 1 mm spot entering through variable positions in the pupil was determined against a background formed by a 4 mm spot entering the pupil centrally. The SCE became steeper in both groups with increasing accommodation stimulus, but with no systematic shift of the peak. Combining the data of both groups gave significant increases in directionality of 15-20% in horizontal and vertical pupil meridians with 6D of accommodation. However, additional experiments indicated that much of this was an artefact of higher order aberrations and accommodative lag. Thus, there appears to be little changes in orientation or directionality in the SCE with accommodation stimulus levels up to 6 D, but it is possible that changes may occur at very high accommodation levels
Resumo:
Background: Mechanical forces either due to accommodation or myopia may stretch the retina and/or cause shear between the retina and choroid. This can be investigated by making use of the Stiles-Crawford effect (SCE), which is the phenomenon of light changing in apparent brightness as it enters through different positions in the pupil. The SCE can be measured by psychophysical and objective techniques, with the SCE parameters being directionality (rate of change across the pupil), and orientation (the location of peak sensitivity in the pupil). Aims: 1. To study the changes in foveal SCE with accommodation in emmetropes and myopes using a subjective (psychophysical) technique. 2. To develop and evaluate a quick objective technique of measuring the SCE using the multifocal electroretinogram. Methods: The SCE was measured in 6 young emmetropes and 6 young myopes for up to 8 D accommodation stimulus with a psychophysical technique and its variants. An objective technique using the multifocal electroretinogram was developed and evaluated with 5 emmetropes. Results: Using the psychophysical technique, the SCE directionality increased by similar amounts in both emmetropes and myopes as accommodation increased, with an increase of 15-20% with 6 D of accommodation. However, there were no significant orientation changes. Additional measurements showed that most of the change in the directionality was probably an artefact of optical factors such as higher-order aberrations and accommodative lag rather a true effect of accommodation. The multifocal technique demonstrated the presence of the SCE, but results were noisy and too variable to detect any changes in SCE directionality or orientation with accommodation. Conclusion: There is little true change in the SCE with accommodation responses up to 6 D in either emmetropes or myopes, although it is possible that substantial changes might occur at very high accommodation levels. The objective technique using the multifocal electroretinogram was quicker and less demanding for the subjects than the psychophysical technique, but as implemented in this thesis, it is not a reliable method of measuring the SCE.
Resumo:
Although the branding literature commenced during the 1940s, the first publications related to destination branding did not emerge until half a century later. A review of 74 destination branding publications by 102 authors from the first 10 years of destination branding literature (1998-2007) found at least nine potential research gaps warranting attention by researchers. In particular, there has been a lack of research examining the extent to which brand positioning campaigns have been successful in enhancing brand equity in the manner intended in the brand identity. The purpose of this paper is to report the results of an investigation of brand equity tracking for a competitive set of destinations in Queensland, Australia between 2003 and 2007. A hierarchy of consumer-based brand equity (CBBE) provided an effective means to monitor destination brand positions over time. A key implication of the results was the finding that there was no change in brand positions for any of the five destinations over the four year period. This leads to the proposition that destination position change within a competitive set will only occur slowly over a long period of time. The tabulation of 74 destination branding case studies, research papers, conceptual papers and web content analyses provides students and researchers with a useful resource on the current state of the field.
Automation of an underground mining vehicle using reactive navigation and opportunistic localization
Resumo:
This paper describes the implementation of an autonomous navigation system onto a 30 tonne Load-Haul-Dump truck. The control architecture is based on a robust reactive wall-following behaviour. To make it purposeful we provide driving hints derived from an approximate nodal-map. For most of the time, the vehicle is driven with weak localization (odometry). This need only be improved at intersections where decisions must be made - a technique we refer to as opportunistic localization. The truck has achieved full-speed autonomous operation at an artificial test mine, and subsequently, at a operational underground mine.