157 resultados para Little Blue River Baptist Church, Indiana.
em Queensland University of Technology - ePrints Archive
Resumo:
Pat Grant’s graphic novel Blue (2012) tells two stories about the impact of a newly migrant group on a small coastal Australian town. The wider story explores the wholesale effects of a previously unknown population joining an existing, culturally homogenous community. These broad social images are used to contextualise the more immediate story of three youths who are disenfranchised within the pre-existing community, but who can claim social enfranchisement by alienating the new members of the community. That the migrant population is depicted literally as aliens emphasises Blue’s participation in a wider conversation about citizenship and empathy. However, Blue does not necessarily seek to provoke a particular emotional response in its readers. Rather, in following three characters who lack what Nussbaum calls “narrative imagination” in their pursuit of good surfing or visceral entertainment—of beaches or bodies—Blue explores the means and consequences of refusing intersubjective affect. This is most powerfully rendered by the main characters’ ultimate avoidance of, and fictions about, a dead body they have wagged school to see. At the very moment of a person becoming a true object—a corpse—the meaning of objectifying people is revealed; the young protagonists seem to recognise this fact, and thus retreat from the affective scene which nonetheless informs Blue as a whole.
Resumo:
The Upper Roper River is one of the Australia’s unique tropical rivers which have been largely untouched by development. The Upper Roper River catchment comprises the sub-catchments of the Waterhouse River and Roper Creek, the two tributaries of the Roper River. There is a complex geological setting with different aquifer types. In this seasonal system, close interaction between surface water and groundwater contributes to both streamflow and sustaining ecosystems. The interaction is highly variable between seasons. A conceptual hydrogeological model was developed to investigate the different hydrological processes and geochemical parameters, and determine the baseline characteristics of water resources of this pristine catchment. In the catchment, long term average rainfall is around 850 mm and is summer dominant which significantly influences the total hydrological system. The difference between seasons is pronounced, with high rainfall up to 600 mm/month in the wet season, and negligible rainfall in the dry season. Canopy interception significantly reduces the amount of effective rainfall because of the native vegetation cover in the pristine catchment. Evaporation exceeds rainfall the majority of the year. Due to elevated evaporation and high temperature in the tropics, at least 600 mm of annual rainfall is required to generate potential recharge. Analysis of 120 years of rainfall data trend helped define “wet” and “dry periods”: decreasing trend corresponds to dry periods, and increasing trend to wet periods. The period from 1900 to 1970 was considered as Dry period 1, when there were years with no effective rainfall, and if there was, the intensity of rainfall was around 300 mm. The period 1970 – 1985 was identified as the Wet period 2, when positive effective rainfall occurred in almost every year, and the intensity reached up to 700 mm. The period 1985 – 1995 was the Dry period 2, with similar characteristics as Dry period 1. Finally, the last decade was the Wet period 2, with effective rainfall intensity up to 800 mm. This variability in rainfall over decades increased/decreased recharge and discharge, improving/reducing surface water and groundwater quantity and quality in different wet and dry periods. The stream discharge follows the rainfall pattern. In the wet season, the aquifer is replenished, groundwater levels and groundwater discharge are high, and surface runoff is the dominant component of streamflow. Waterhouse River contributes two thirds and Roper Creek one third to Roper River flow. As the dry season progresses, surface runoff depletes, and groundwater becomes the main component of stream flow. Flow in Waterhouse River is negligible, the Roper Creek dries up, but the Roper River maintains its flow throughout the year. This is due to the groundwater and spring discharge from the highly permeable Tindall Limestone and tufa aquifers. Rainfall seasonality and lithology of both the catchment and aquifers are shown to influence water chemistry. In the wet season, dilution of water bodies by rainwater is the main process. In the dry season, when groundwater provides baseflow to the streams, their chemical composition reflects lithology of the aquifers, in particular the karstic areas. Water chemistry distinguishes four types of aquifer materials described as alluvium, sandstone, limestone and tufa. Surface water in the headwaters of the Waterhouse River, the Roper Creek and their tributaries are freshwater, and reflect the alluvium and sandstone aquifers. At and downstream of the confluence of the Roper River, river water chemistry indicates the influence of rainfall dilution in the wet season, and the signature of the Tindall Limestone and tufa aquifers in the dry. Rainbow Spring on the Waterhouse River and Bitter Spring on the Little Roper River (known as Roper Creek at the headwaters) discharge from the Tindall Limestone. Botanic Walk Spring and Fig Tree Spring discharge into the Roper River from tufa. The source of water was defined based on water chemical composition of the springs, surface and groundwater. The mechanisms controlling surface water chemistry were examined to define the dominance of precipitation, evaporation or rock weathering on the water chemical composition. Simple water balance models for the catchment have been developed. The important aspects to be considered in water resource planning of this total system are the naturally high salinity in the region, especially the downstream sections, and how unpredictable climate variation may impact on the natural seasonal variability of water volumes and surface-subsurface interaction.
Resumo:
Purpose – The purpose of this paper is to investigate the relationship between workplace factors and the intentions of police officers to quit their current department. Design/methodology/approach – Data from a survey of Baltimore officers, designed to examine the relationship between police stress and domestic violence in police families were used. Using multivariate regression analysis, the authors focus on the officers' stated intentions to look for alternative employment, with proxies for social and workplace factors. Findings – Higher levels of cooperation (trust), interactional justice and work-life-balance reduce police officers' intentions to quit. While high levels of physical and psychological strain and trauma are not correlated with intentions to quit. Research limitations/implications – A discernible limitation of this study is the age of the data analyzed and that many changes have occurred in recent times (policing and social). It would be of great interest to repeat this study to gauge the true effect. Practical implications – There are policy implications for retention and recruitment: it may possible to decrease the ethnic and gender gaps, through identifying officers at risk and creating programs to hold existing minorities, recruit more, whilst maintaining a strong, happy and healthy department. Originality/value – This study examines the impact of workplace factors on quitting intention for police officers. It is demonstrated that social capital, fairness and work-life balance are moderators for quitting, adding to the literature on worker retention, as little research has been done using multivariate analysis on quitting intentions.
Resumo:
In studies using macroinvertebrates as indicators for monitoring rivers and streams, species level identifications in comparison with lower resolution identifications can have greater information content and result in more reliable site classifications and better capacity to discriminate between sites, yet many such programmes identify specimens to the resolution of family rather than species. This is often because it is cheaper to obtain family level data than species level data. Choice of appropriate taxonomic resolution is a compromise between the cost of obtaining data at high taxonomic resolutions and the loss of information at lower resolutions. Optimum taxonomic resolution should be determined by the information required to address programme objectives. Costs saved in identifying macroinvertebrates to family level may not be justified if family level data can not give the answers required and expending the extra cost to obtain species level data may not be warranted if cheaper family level data retains sufficient information to meet objectives. We investigated the influence of taxonomic resolution and sample quantification (abundance vs. presence/absence) on the representation of aquatic macroinvertebrate species assemblage patterns and species richness estimates. The study was conducted in a physically harsh dryland river system (Condamine-Balonne River system, located in south-western Queensland, Australia), characterised by low macroinvertebrate diversity. Our 29 study sites covered a wide geographic range and a diversity of lotic conditions and this was reflected by differences between sites in macroinvertebrate assemblage composition and richness. The usefulness of expending the extra cost necessary to identify macroinvertebrates to species was quantified via the benefits this higher resolution data offered in its capacity to discriminate between sites and give accurate estimates of site species richness. We found that very little information (<6%) was lost by identifying taxa to family (or genus), as opposed to species, and that quantifying the abundance of taxa provided greater resolution for pattern interpretation than simply noting their presence/absence. Species richness was very well represented by genus, family and order richness, so that each of these could be used as surrogates of species richness if, for example, surveying to identify diversity hot-spots. It is suggested that sharing of common ecological responses among species within higher taxonomic units is the most plausible mechanism for the results. Based on a cost/benefit analysis, family level abundance data is recommended as the best resolution for resolving patterns in macroinvertebrate assemblages in this system. The relevance of these findings are discussed in the context of other low diversity, harsh, dryland river systems.
Resumo:
A travel article about the Moselle Valley, Germany. There’s a school of thought that says you shouldn’t look back in life. This is not the received wisdom in Cochem, a village on the Moselle river known, like many others in the area, for its white wine and fairytale castle. Here, they say, it’s bad luck if you don’t turn around for one last look at a mural of St Christopher that graces the castle’s main tower...
Resumo:
Respect for a person's right to make choices and participate in decision making is generally seen as central to quality of life and well-being. When a person moves into a residential aged care facility (RACF), however, decision making becomes more complicated, particularly if the person has a diagnosis of dementia. Little is known about how staff in RACFs perceive that they support decision making for people with dementia within their everyday practice, and this article seeks to address this knowledge gap. The article reports on the findings of a qualitative study conducted in the states of Victoria and Queensland, Australia with 80 direct care staff members. Findings revealed that the participants utilized a number of strategies in their intention to support decision making for people with dementia, and had an overall perception that "a little effort goes a long way."
Resumo:
Ross River virus (RRV) disease is the most common and widespread mosquito-borne disease in Australia, resulting in considerable health and economic cost to communities. While naturally occurring non-tidal flood events may enhance mosquito abundance, little is known about the impact of such events on RRV transmission. This paper critically reviews the existing evidence for an association between naturally occurring non-tidal flood events and RRV transmission. A systematic literature search was conducted on RRV transmission related to flooding and inundation from rain and riverine overflow. Overall, the evidence to support a positive association between flooding and RRV outbreaks is largely circumstantial, with the literature mostly reporting only coincidental occurrence between the two. However, for the Murray River, river flow and height (surrogates of flooding) were positively and significantly associated with RRV transmission. The association between non-tidal flooding and RRV transmission has not been studied comprehensively. More frequent flood events arising from climate change may result in increased outbreaks of RRV disease. Understanding the link between flood events and RRV transmission is necessary if resources for mosquito spraying and public health warnings are to be utilized more effectively and efficiently.
Rainfall, Mosquito Density and the Transmission of Ross River Virus: A Time-Series Forecasting Model
Resumo:
The spatial and temporal variations of Ross River virus infections reported in Queensland, Australia, between 1985 and 1996 were studied by using the Geographic Information System. The notified cases of Ross River virus infection came from 489 localities between 1985 and 1988, 805 between 1989 and 1992, and 1,157 between 1993 and 1996 (chi2(df = 2) = 680.9; P < 0.001). There was a marked increase in the number of localities where the cases were reported by 65 percent for the period of 1989-1992 and 137 percent for 1993-1996, compared with that for 1985-1988. The geographic distribution of the notified Ross River virus cases has expanded in Queensland over recent years. As Ross River virus disease has impacted considerably on tourism and industry, as well as on residents of affected areas, more research is required to explore the causes of the geographic expansion of the notified Ross River virus infections.
Resumo:
We used geographic information systems and a spatial analysis approach to explore the pattern of Ross River virus (RRV) incidence in Brisbane, Australia. Climate, vegetation and socioeconomic data in 2001 were obtained from the Australian Bureau of Meteorology, the Brisbane City Council and the Australian Bureau of Statistics, respectively. Information on the RRV cases was obtained from the Queensland Department of Health. Spatial and multiple negative binomial regression models were used to identify the socioeconomic and environmental determinants of RRV transmission. The results show that RRV activity was primarily concentrated in the northeastern, northwestern, and southeastern regions in Brisbane. Multiple negative binomial regression models showed that the spatial pattern of RRV disease in Brisbane seemed to be determined by a combination of local ecologic, socioeconomic, and environmental factors.