375 resultados para Linear matrix inequalities (LMI)

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since a celebrate linear minimum mean square (MMS) Kalman filter in integration GPS/INS system cannot guarantee the robustness performance, a H(infinity) filtering with respect to polytopic uncertainty is designed. The purpose of this paper is to give an illustration of this application and a contrast with traditional Kalman filter. A game theory H(infinity) filter is first reviewed; next we utilize linear matrix inequalities (LMI) approach to design the robust H(infinity) filter. For the special INS/GPS model, unstable model case is considered. We give an explanation for Kalman filter divergence under uncertain dynamic system and simultaneously investigate the relationship between H(infinity) filter and Kalman filter. A loosely coupled INS/GPS simulation system is given here to verify this application. Result shows that the robust H(infinity) filter has a better performance when system suffers uncertainty; also it is more robust compared to the conventional Kalman filter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the robust H∞ control for Takagi-Sugeno (T-S) fuzzy systems with interval time-varying delay. By employing a new and tighter integral inequality and constructing an appropriate type of Lyapunov functional, delay-dependent stability criteria are derived for the control problem. Because neither any model transformation nor free weighting matrices are employed in our theoretical derivation, the developed stability criteria significantly improve and simplify the existing stability conditions. Also, the maximum allowable upper delay bound and controller feedback gains can be obtained simultaneously from the developed approach by solving a constrained convex optimization problem. Numerical examples are given to demonstrate the effectiveness of the proposed methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address robust stabilization problem for networked control systems with nonlinear uncertainties and packet losses by modelling such systems as a class of uncertain switched systems. Based on theories on switched Lyapunov functions, we derive the robustly stabilizing conditions for state feedback stabilization and design packet-loss dependent controllers by solving some matrix inequalities. A numerical example and some simulations are worked out to demonstrate the effectiveness of the proposed design method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study considers the solution of a class of linear systems related with the fractional Poisson equation (FPE) (−∇2)α/2φ=g(x,y) with nonhomogeneous boundary conditions on a bounded domain. A numerical approximation to FPE is derived using a matrix representation of the Laplacian to generate a linear system of equations with its matrix A raised to the fractional power α/2. The solution of the linear system then requires the action of the matrix function f(A)=A−α/2 on a vector b. For large, sparse, and symmetric positive definite matrices, the Lanczos approximation generates f(A)b≈β0Vmf(Tm)e1. This method works well when both the analytic grade of A with respect to b and the residual for the linear system are sufficiently small. Memory constraints often require restarting the Lanczos decomposition; however this is not straightforward in the context of matrix function approximation. In this paper, we use the idea of thick-restart and adaptive preconditioning for solving linear systems to improve convergence of the Lanczos approximation. We give an error bound for the new method and illustrate its role in solving FPE. Numerical results are provided to gauge the performance of the proposed method relative to exact analytic solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Takeaway consumption has been increasing and may contribute to socioeconomic inequalities in overweight/obesity and chronic disease. This study examined socioeconomic differences in takeaway consumption patterns, and their contributions to dietary intake inequalities. Method Cross-sectional dietary intake data from adults aged between 25 and 64 years from the Australian National Nutrition Survey (n= 7319, 61% response rate). Twenty-four hour dietary recalls ascertained intakes of takeaway food, nutrients and fruit and vegetables. Education was used as socioeconomic indicator. Data were analysed using logistic regression and general linear models. Results Thirty-two percent (n = 2327) consumed takeaway foods in the 24 hour period. Lower-educated participants were less likely than their higher-educated counterparts to have consumed total takeaway foods (OR 0.64; 95% CI 0.52, 0.80). Of those consuming takeaway foods, the lowest-educated group was more likely to have consumed “less healthy” takeaway choices (OR 2.55; 95% CI 1.73, 3.77), and less likely to have consumed “healthy” choices (OR 0.52; 95% CI 0.36, 0.75). Takeaway foods made a greater contribution to energy, total fat, saturated fat, and fibre intakes among lower than higher-educated groups. Lower likelihood of fruit and vegetable intakes were observed among “less healthy” takeaway consumers, whereas a greater likelihood of their consumption was found among “healthy” takeaway consumers. Conclusions Total and the types of takeaway foods consumed may contribute to socioeconomic inequalities in intakes of energy, total and saturated fats. However, takeaway consumption is unlikely to be a factor contributing to the lower fruit and vegetable intakes among socioeconomically-disadvantaged groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of a numerical investigation into the errors for least squares estimates of function gradients are presented. The underlying algorithm is obtained by constructing a least squares problem using a truncated Taylor expansion. An error bound associated with this method contains in its numerator terms related to the Taylor series remainder, while its denominator contains the smallest singular value of the least squares matrix. Perhaps for this reason the error bounds are often found to be pessimistic by several orders of magnitude. The circumstance under which these poor estimates arise is elucidated and an empirical correction of the theoretical error bounds is conjectured and investigated numerically. This is followed by an indication of how the conjecture is supported by a rigorous argument.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Streaming SIMD extension (SSE) is a special feature embedded in the Intel Pentium III and IV classes of microprocessors. It enables the execution of SIMD type operations to exploit data parallelism. This article presents improving computation performance of a railway network simulator by means of SSE. Voltage and current at various points of the supply system to an electrified railway line are crucial for design, daily operation and planning. With computer simulation, their time-variations can be attained by solving a matrix equation, whose size mainly depends upon the number of trains present in the system. A large coefficient matrix, as a result of congested railway line, inevitably leads to heavier computational demand and hence jeopardizes the simulation speed. With the special architectural features of the latest processors on PC platforms, significant speed-up in computations can be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Streaming SIMD Extensions (SSE) is a unique feature embedded in the Pentium III and IV classes of microprocessors. By fully exploiting SSE, parallel algorithms can be implemented on a standard personal computer and a theoretical speedup of four can be achieved. In this paper, we demonstrate the implementation of a parallel LU matrix decomposition algorithm for solving linear systems with SSE and discuss advantages and disadvantages of this approach based on our experimental study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space - classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space -- classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -- using the labelled part of the data one can learn an embedding also for the unlabelled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method to learn the 2-norm soft margin parameter in support vector machines, solving another important open problem. Finally, the novel approach presented in the paper is supported by positive empirical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present the outcomes of a project on the exploration of the use of Field Programmable Gate Arrays(FPGAs) as co-processors for scientific computation. We designed a custom circuit for the pipelined solving of multiple tri-diagonal linear systems. The design is well suited for applications that require many independent tri diagonal system solves, such as finite difference methods for solving PDEs or applications utilising cubic spline interpolation. The selected solver algorithm was the Tri Diagonal Matrix Algorithm (TDMA or Thomas Algorithm). Our solver supports user specified precision thought the use of a custom floating point VHDL library supporting addition, subtraction, multiplication and division. The variable precision TDMA solver was tested for correctness in simulation mode. The TDMA pipeline was tested successfully in hardware using a simplified solver model. The details of implementation, the limitations, and future work are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present the outcomes of a project on the exploration of the use of Field Programmable Gate Arrays (FPGAs) as co-processors for scientific computation. We designed a custom circuit for the pipelined solving of multiple tri-diagonal linear systems. The design is well suited for applications that require many independent tri-diagonal system solves, such as finite difference methods for solving PDEs or applications utilising cubic spline interpolation. The selected solver algorithm was the Tri-Diagonal Matrix Algorithm (TDMA or Thomas Algorithm). Our solver supports user specified precision thought the use of a custom floating point VHDL library supporting addition, subtraction, multiplication and division. The variable precision TDMA solver was tested for correctness in simulation mode. The TDMA pipeline was tested successfully in hardware using a simplified solver model. The details of implementation, the limitations, and future work are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The R statistical environment and language has demonstrated particular strengths for interactive development of statistical algorithms, as well as data modelling and visualisation. Its current implementation has an interpreter at its core which may result in a performance penalty in comparison to directly executing user algorithms in the native machine code of the host CPU. In contrast, the C++ language has no built-in visualisation capabilities, handling of linear algebra or even basic statistical algorithms; however, user programs are converted to high-performance machine code, ahead of execution. A new method avoids possible speed penalties in R by using the Rcpp extension package in conjunction with the Armadillo C++ matrix library. In addition to the inherent performance advantages of compiled code, Armadillo provides an easy-to-use template-based meta-programming framework, allowing the automatic pooling of several linear algebra operations into one, which in turn can lead to further speedups. With the aid of Rcpp and Armadillo, conversion of linear algebra centered algorithms from R to C++ becomes straightforward. The algorithms retains the overall structure as well as readability, all while maintaining a bidirectional link with the host R environment. Empirical timing comparisons of R and C++ implementations of a Kalman filtering algorithm indicate a speedup of several orders of magnitude.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an Image Based Visual Servo control design for Fixed Wing Unmanned Aerial Vehicles tracking locally linear infrastructure in the presence of wind using a body fixed imaging sensor. Visual servoing offers improved data collection by posing the tracking task as one of controlling a feature as viewed by the inspection sensor, although is complicated by the introduction of wind as aircraft heading and course angle no longer align. In this work it is shown that the effects of wind alter the desired line angle required for continuous tracking to equal the wind correction angle as would be calculated to set a desired course. A control solution is then sort by linearizing the interaction matrix about the new feature pose such that kinematics of the feature can be augmented with the lateral dynamics of the aircraft, from which a state feedback control design is developed. Simulation results are presented comparing no compensation, integral control and the proposed controller using the wind correction angle, followed by an assessment of response to atmospheric disturbances in the form of turbulence and wind gusts