173 resultados para Linear Codes
em Queensland University of Technology - ePrints Archive
Resumo:
This paper describes the limitations of using the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision, Australian Modification (ICD-10-AM) to characterise patient harm in hospitals. Limitations were identified during a project to use diagnoses flagged by Victorian coders as hospital-acquired to devise a classification of 144 categories of hospital acquired diagnoses (the Classification of Hospital Acquired Diagnoses or CHADx). CHADx is a comprehensive data monitoring system designed to allow hospitals to monitor their complication rates month-to-month using a standard method. Difficulties in identifying a single event from linear sequences of codes due to the absence of code linkage were the major obstacles to developing the classification. Obstetric and perinatal episodes also presented challenges in distinguishing condition onset, that is, whether conditions were present on admission or arose after formal admission to hospital. Used in the appropriate way, the CHADx allows hospitals to identify areas for future patient safety and quality initiatives. The value of timing information and code linkage should be recognised in the planning stages of any future electronic systems.
Resumo:
In this paper we investigate the effectiveness of class specific sparse codes in the context of discriminative action classification. The bag-of-words representation is widely used in activity recognition to encode features, and although it yields state-of-the art performance with several feature descriptors it still suffers from large quantization errors and reduces the overall performance. Recently proposed sparse representation methods have been shown to effectively represent features as a linear combination of an over complete dictionary by minimizing the reconstruction error. In contrast to most of the sparse representation methods which focus on Sparse-Reconstruction based Classification (SRC), this paper focuses on a discriminative classification using a SVM by constructing class-specific sparse codes for motion and appearance separately. Experimental results demonstrates that separate motion and appearance specific sparse coefficients provide the most effective and discriminative representation for each class compared to a single class-specific sparse coefficients.
Resumo:
Linear algebra provides theory and technology that are the cornerstones of a range of cutting edge mathematical applications, from designing computer games to complex industrial problems, as well as more traditional applications in statistics and mathematical modelling. Once past introductions to matrices and vectors, the challenges of balancing theory, applications and computational work across mathematical and statistical topics and problems are considerable, particularly given the diversity of abilities and interests in typical cohorts. This paper considers two such cohorts in a second level linear algebra course in different years. The course objectives and materials were almost the same, but some changes were made in the assessment package. In addition to considering effects of these changes, the links with achievement in first year courses are analysed, together with achievement in a following computational mathematics course. Some results that may initially appear surprising provide insight into the components of student learning in linear algebra.