484 resultados para Learning Problems
em Queensland University of Technology - ePrints Archive
Resumo:
Within an action research framework, this paper describes the conceptual basis for developing a crossdisciplinary pedagogical model of higher education/industry engagement for the built environment design disciplines including architecture, interior design, industrial design and landscape architecture. Aiming to holistically acknowledge and capitalize on the work environment as a place of authentic learning, problems arising in practice are understood as the impetus, focus and ‘space’ for a process of inquiry and discovery that, in the spirit of Boyer’s ‘Scholarship of Integration’, provides for generic as well as discipline-specific learning.
Resumo:
This important work describes recent theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Chapters survey research on pattern classification with binary-output networks, including a discussion of the relevance of the Vapnik Chervonenkis dimension, and of estimates of the dimension for several neural network models. In addition, Anthony and Bartlett develop a model of classification by real-output networks, and demonstrate the usefulness of classification with a "large margin." The authors explain the role of scale-sensitive versions of the Vapnik Chervonenkis dimension in large margin classification, and in real prediction. Key chapters also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient, constructive learning algorithms. The book is self-contained and accessible to researchers and graduate students in computer science, engineering, and mathematics
Resumo:
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space - classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.
Resumo:
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space -- classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -- using the labelled part of the data one can learn an embedding also for the unlabelled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method to learn the 2-norm soft margin parameter in support vector machines, solving another important open problem. Finally, the novel approach presented in the paper is supported by positive empirical results.
Resumo:
We study the regret of optimal strategies for online convex optimization games. Using von Neumann's minimax theorem, we show that the optimal regret in this adversarial setting is closely related to the behavior of the empirical minimization algorithm in a stochastic process setting: it is equal to the maximum, over joint distributions of the adversary's action sequence, of the difference between a sum of minimal expected losses and the minimal empirical loss. We show that the optimal regret has a natural geometric interpretation, since it can be viewed as the gap in Jensen's inequality for a concave functional--the minimizer over the player's actions of expected loss--defined on a set of probability distributions. We use this expression to obtain upper and lower bounds on the regret of an optimal strategy for a variety of online learning problems. Our method provides upper bounds without the need to construct a learning algorithm; the lower bounds provide explicit optimal strategies for the adversary. Peter L. Bartlett, Alexander Rakhlin
Resumo:
A number of learning problems can be cast as an Online Convex Game: on each round, a learner makes a prediction x from a convex set, the environment plays a loss function f, and the learner’s long-term goal is to minimize regret. Algorithms have been proposed by Zinkevich, when f is assumed to be convex, and Hazan et al., when f is assumed to be strongly convex, that have provably low regret. We consider these two settings and analyze such games from a minimax perspective, proving minimax strategies and lower bounds in each case. These results prove that the existing algorithms are essentially optimal.
Resumo:
The foetal alcohol syndrome (FAS) was first identified as a syndrome in 1973. Since then a large body of research has accumulated. The full syndrome in which heavy alcohol use in pregnancy results in growth retardation, a characteristic facial dysmorphology and brain damage will be described. FAS is the commonest preventable, known cause of intellectual handicap, however, a large proportion of people with partial foetal alcohol syndrome have an intelligence in the normal range. Those with the full syndrome and with identified and diagnosed, intellectual handicap are more likely to receive appropriate services. Those with an intelligence in the normal range, suffer from severe psycho- social disabilities resulting in homelessness, mental illness and frequently criminality. There is a larger number of people with a partial syndrome who also suffer from high rates of secondary disability including learning problems and 70% of FAS people also have ADD or ADHD...
Resumo:
Machine learning has become a valuable tool for detecting and preventing malicious activity. However, as more applications employ machine learning techniques in adversarial decision-making situations, increasingly powerful attacks become possible against machine learning systems. In this paper, we present three broad research directions towards the end of developing truly secure learning. First, we suggest that finding bounds on adversarial influence is important to understand the limits of what an attacker can and cannot do to a learning system. Second, we investigate the value of adversarial capabilities-the success of an attack depends largely on what types of information and influence the attacker has. Finally, we propose directions in technologies for secure learning and suggest lines of investigation into secure techniques for learning in adversarial environments. We intend this paper to foster discussion about the security of machine learning, and we believe that the research directions we propose represent the most important directions to pursue in the quest for secure learning.
Resumo:
This paper will report on the “wicked” problems encountered when designing an online course with bounded content in an unbounded learning environment. It will describe the dilemmas faced and decisions made by academics in an Australian university challenged by an institutional initiative to design radical, disruptive learning experiences making use of readily available online media. This bounded/unbounded environment demands new roles for instructors in adopting innovative pedagogies and teaching and learning strategies. It also creates changing and challenging roles for course designers as they deal with ill-defined parameters and unknown audiences. In this paper, we propose a novel methodology for making curricular decisions in ill-defined spaces.
Resumo:
Linear algebra provides theory and technology that are the cornerstones of a range of cutting edge mathematical applications, from designing computer games to complex industrial problems, as well as more traditional applications in statistics and mathematical modelling. Once past introductions to matrices and vectors, the challenges of balancing theory, applications and computational work across mathematical and statistical topics and problems are considerable, particularly given the diversity of abilities and interests in typical cohorts. This paper considers two such cohorts in a second level linear algebra course in different years. The course objectives and materials were almost the same, but some changes were made in the assessment package. In addition to considering effects of these changes, the links with achievement in first year courses are analysed, together with achievement in a following computational mathematics course. Some results that may initially appear surprising provide insight into the components of student learning in linear algebra.
Resumo:
This thesis reports the outcomes of an investigation into students’ experience of Problem-based learning (PBL) in virtual space. PBL is increasingly being used in many fields including engineering education. At the same time many engineering education providers are turning to online distance education. Unfortunately there is a dearth of research into what constitutes an effective learning experience for adult learners who undertake PBL instruction through online distance education. Research was therefore focussed on discovering the qualitatively different ways that students experience PBL in virtual space. Data was collected in an electronic environment from a course, which adopted the PBL strategy and was delivered entirely in virtual space. Students in this course were asked to respond to open-ended questions designed to elicit their learning experience in the course. Data was analysed using the phenomenographical approach. This interpretative research method concentrated on mapping the qualitative differences in students’ interpretations of their experience in the course. Five qualitatively different ways of experiencing were discovered: Conception 1: ‘A necessary evil for program progression’; Conception 2: ‘Developing skills to understand, evaluate, and solve technical Engineering and Surveying problems’; Conception 3: ‘Developing skills to work effectively in teams in virtual space’; Conception 4: ‘A unique approach to learning how to learn’; Conception 5: ‘Enhancing personal growth’. Each conception reveals variation in how students attend to learning by PBL in virtual space. Results indicate that the design of students’ online learning experience was responsible for making students aware of deeper ways of experiencing PBL in virtual space. Results also suggest that the quality and quantity of interaction with the team facilitator may have a significant impact on the student experience in virtual PBL courses. The outcomes imply pedagogical strategies can be devised for shifting students’ focus as they engage in the virtual PBL experience to effectively manage the student learning experience and thereby ensure that they gain maximum benefit. The results from this research hold important ramifications for graduates with respect to their ease of transition into professional work as well as their later professional competence in terms of problem solving, ability to transfer basic knowledge to real-life engineering scenarios, ability to adapt to changes and apply knowledge in unusual situations, ability to think critically and creatively, and a commitment to continuous life-long learning and self-improvement.
Resumo:
In an investigation of the problems and coping strategies of Australian high school students, comparisons were made between the responses of 1664 students enrolled in years 8 to 12 in 1988, 1620 students enrolled in the same year levels in 1993, and 178 high school teachers in 1993. The subjects completed the High School Stressors Scale and the Adolescent Coping Strategies Scale. Data analyses using MANOVAs, ANOVAs, and t- tests revealed close similarities between the responses of the 1993 students and those of the 1988 students, but a considerable amount of incongruence between the responses of the students and those of the teachers. In particular, the teachers generally seemed to regard their students' problems as being more serious than was acknowledged by the students, and the teachers generally seemed to project a less positive view of adolescents' coping strategies than did the students. These discrepancies are discussed in terms of the different orientations that students and teachers bring to the student- teacher relationship. It is suggested that teachers and counsellors need to take cognisance of the differences between adolescents' perspectives and their own if they are going to be effective in assisting students to develop positive coping strategies and in creating more positive learning environments.
Resumo:
Although some developmental disabilities may be identified soon after birth (e.g. Down Syndrome) many problems do not become apparent until much later. The first indication of a significant disorder may be the infant's failure to achieve early developmental milestones at the expected ages, but the variability and subtlety of symtoms in many developmental disorders often makes them difficult to recognise. Clearly itis desirable to identify developmental problems as early as possible to ensure the provision of appropriate support and intervention services and to lessen the impact on subsequent development.
Resumo:
Construction projects are faced with a challenge that must not be underestimated. These projects are increasingly becoming highly competitive, more complex, and difficult to manage. They become ‘wicked problems’, which are difficult to solve using traditional approaches. Soft Systems Methodology (SSM) is a systems approach that is used for analysis and problem solving in such complex and messy situations. SSM uses “systems thinking” in a cycle of action research, learning and reflection to help understand the various perceptions that exist in the minds of the different people involved in the situation. This paper examines the benefits of applying SSM to wicked problems in construction project management, especially those situations that are challenging to understand and difficult to act upon. It includes relevant examples of its use in dealing with the confusing situations that incorporate human, organizational and technical aspects.