266 resultados para L-functions
em Queensland University of Technology - ePrints Archive
Resumo:
Matrix function approximation is a current focus of worldwide interest and finds application in a variety of areas of applied mathematics and statistics. In this thesis we focus on the approximation of A^(-α/2)b, where A ∈ ℝ^(n×n) is a large, sparse symmetric positive definite matrix and b ∈ ℝ^n is a vector. In particular, we will focus on matrix function techniques for sampling from Gaussian Markov random fields in applied statistics and the solution of fractional-in-space partial differential equations. Gaussian Markov random fields (GMRFs) are multivariate normal random variables characterised by a sparse precision (inverse covariance) matrix. GMRFs are popular models in computational spatial statistics as the sparse structure can be exploited, typically through the use of the sparse Cholesky decomposition, to construct fast sampling methods. It is well known, however, that for sufficiently large problems, iterative methods for solving linear systems outperform direct methods. Fractional-in-space partial differential equations arise in models of processes undergoing anomalous diffusion. Unfortunately, as the fractional Laplacian is a non-local operator, numerical methods based on the direct discretisation of these equations typically requires the solution of dense linear systems, which is impractical for fine discretisations. In this thesis, novel applications of Krylov subspace approximations to matrix functions for both of these problems are investigated. Matrix functions arise when sampling from a GMRF by noting that the Cholesky decomposition A = LL^T is, essentially, a `square root' of the precision matrix A. Therefore, we can replace the usual sampling method, which forms x = L^(-T)z, with x = A^(-1/2)z, where z is a vector of independent and identically distributed standard normal random variables. Similarly, the matrix transfer technique can be used to build solutions to the fractional Poisson equation of the form ϕn = A^(-α/2)b, where A is the finite difference approximation to the Laplacian. Hence both applications require the approximation of f(A)b, where f(t) = t^(-α/2) and A is sparse. In this thesis we will compare the Lanczos approximation, the shift-and-invert Lanczos approximation, the extended Krylov subspace method, rational approximations and the restarted Lanczos approximation for approximating matrix functions of this form. A number of new and novel results are presented in this thesis. Firstly, we prove the convergence of the matrix transfer technique for the solution of the fractional Poisson equation and we give conditions by which the finite difference discretisation can be replaced by other methods for discretising the Laplacian. We then investigate a number of methods for approximating matrix functions of the form A^(-α/2)b and investigate stopping criteria for these methods. In particular, we derive a new method for restarting the Lanczos approximation to f(A)b. We then apply these techniques to the problem of sampling from a GMRF and construct a full suite of methods for sampling conditioned on linear constraints and approximating the likelihood. Finally, we consider the problem of sampling from a generalised Matern random field, which combines our techniques for solving fractional-in-space partial differential equations with our method for sampling from GMRFs.
Resumo:
Background The androgen receptor is a ligand-induced transcriptional factor, which plays an important role in normal development of the prostate as well as in the progression of prostate cancer to a hormone refractory state. We previously reported the identification of a novel AR coactivator protein, L-dopa decarboxylase (DDC), which can act at the cytoplasmic level to enhance AR activity. We have also shown that DDC is a neuroendocrine (NE) marker of prostate cancer and that its expression is increased after hormone-ablation therapy and progression to androgen independence. In the present study, we generated tetracycline-inducible LNCaP-DDC prostate cancer stable cells to identify DDC downstream target genes by oligonucleotide microarray analysis. Results Comparison of induced DDC overexpressing cells versus non-induced control cell lines revealed a number of changes in the expression of androgen-regulated transcripts encoding proteins with a variety of molecular functions, including signal transduction, binding and catalytic activities. There were a total of 35 differentially expressed genes, 25 up-regulated and 10 down-regulated, in the DDC overexpressing cell line. In particular, we found a well-known androgen induced gene, TMEPAI, which wasup-regulated in DDC overexpressing cells, supporting its known co-activation function. In addition, DDC also further augmented the transcriptional repression function of AR for a subset of androgen-repressed genes. Changes in cellular gene transcription detected by microarray analysis were confirmed for selected genes by quantitative real-time RT-PCR. Conclusion Taken together, our results provide evidence for linking DDC action with AR signaling, which may be important for orchestrating molecular changes responsible for prostate cancer progression.
Resumo:
This article applies social network analysis techniques to a case study of police corruption in order to produce findings which will assist in corruption prevention and investigation. Police corruption is commonly studied but rarely are sophisticated tools of analyse engaged to add rigour to the field of study. This article analyses the ‘First Joke’ a systemic and long lasting corruption network in the Queensland Police Force, a state police agency in Australia. It uses the data obtained from a commission of inquiry which exposed the network and develops hypotheses as to the nature of the networks structure based on existing literature into dark networks and criminal networks. These hypotheses are tested by entering the data into UCINET and analysing the outcomes through social network analysis measures of average path distance, centrality and density. The conclusions reached show that the network has characteristics not predicted by the literature.
Resumo:
In 1980 Alltop produced a family of cubic phase sequences that nearly meet the Welch bound for maximum non-peak correlation magnitude. This family of sequences were shown by Wooters and Fields to be useful for quantum state tomography. Alltop’s construction used a function that is not planar, but whose difference function is planar. In this paper we show that Alltop type functions cannot exist in fields of characteristic 3 and that for a known class of planar functions, x^3 is the only Alltop type function.
Resumo:
The current study examined the structure of the volunteer functions inventory within a sample of older individuals (N = 187). The career items were replaced with items examining the concept of continuity of work, a potentially more useful and relevant concept for this population. Factor analysis supported a four factor solution, with values, social and continuity emerging as single factors and enhancement and protective items loading together on a single factor. Understanding items did not load highly on any factor. The values and continuity functions were the only dimensions to emerge as predictors of intention to volunteer. This research has important implications for understanding the motivation of older adults to engage in contemporary volunteering settings.
Resumo:
Sequences with optimal correlation properties are much sought after for applications in communication systems. In 1980, Alltop (\emph{IEEE Trans. Inf. Theory} 26(3):350-354, 1980) described a set of sequences based on a cubic function and showed that these sequences were optimal with respect to the known bounds on auto and crosscorrelation. Subsequently these sequences were used to construct mutually unbiased bases (MUBs), a structure of importance in quantum information theory. The key feature of this cubic function is that its difference function is a planar function. Functions with planar difference functions have been called \emph{Alltop functions}. This paper provides a new family of Alltop functions and establishes the use of Alltop functions for construction of sequence sets and MUBs.
An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane
Resumo:
Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology.
Resumo:
Ground-penetrating radar (GPR) is widely used for assessment of soil moisture variability in field soils. Because GPR does not measure soil water content directly, it is common practice to use calibration functions that describe its relationship with the soil dielectric properties and textural parameters. However, the large variety of models complicates the selection of the appropriate function. In this article an overview is presented of the different functions available, including volumetric models, empirical functions, effective medium theories, and frequency-specific functions. Using detailed information presented in summary tables, the choice for which calibration function to use can be guided by the soil variables available to the user, the frequency of the GPR equipment, and the desired level of detail of the output. This article can thus serve as a guide for GPR practitioners to obtain soil moisture values and to estimate soil dielectric properties.
Resumo:
The functions of the volunteer functions inventory were combined with the constructs of the theory of planned behaviour (i.e., attitudes, subjective norms, and perceived behavioural control) to establish whether a stronger, single explanatory model prevailed. Undertaken in the context of episodic, skilled volunteering by individuals who were retired or approaching retirement (N = 186), the research advances on prior studies which either examined the predictive capacity of each model independently or compared their explanatory value. Using hierarchical regression analysis, the functions of the volunteer functions inventory (when controlling for demographic variables) explained an additional 7.0% of variability in individuals’ willingness to volunteer over and above that accounted for by the theory of planned behaviour. Significant predictors in the final model included attitudes, subjective norms and perceived behavioural control from the theory of planned behaviour and the understanding function from the volunteer functions inventory. It is proposed that the items comprising the understanding function may represent a deeper psychological construct (e.g., self-actualisation) not accounted for by the theory of planned behaviour. The findings highlight the potential benefit of combining these two prominent models in terms of improving understanding of volunteerism and providing a single parsimonious model for raising rates of this important behaviour.
Resumo:
Mode indicator functions (MIFs) are used in modal testing and analysis as a means of identifying modes of vibration, often as a precursor to modal parameter estimation. Various methods have been developed since the MIF was introduced four decades ago. These methods are quite useful in assisting the analyst to identify genuine modes and, in the case of the complex mode indicator function, have even been developed into modal parameter estimation techniques. Although the various MIFs are able to indicate the existence of a mode, they do not provide the analyst with any descriptive information about the mode. This paper uses the simple summation type of MIF to develop five averaged and normalised MIFs that will provide the analyst with enough information to identify whether a mode is longitudinal, vertical, lateral or torsional. The first three functions, termed directional MIFs, have been noted in the literature in one form or another; however, this paper introduces a new twist on the MIF by introducing two MIFs, termed torsional MIFs, that can be used by the analyst to identify torsional modes and, moreover, can assist in determining whether the mode is of a pure torsion or sway type (i.e., having a rigid cross-section) or a distorted twisting type. The directional and torsional MIFs are tested on a finite element model based simulation of an experimental modal test using an impact hammer. Results indicate that the directional and torsional MIFs are indeed useful in assisting the analyst to identify whether a mode is longitudinal, vertical, lateral, sway, or torsion.
Resumo:
The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.