146 resultados para Janus Particles
em Queensland University of Technology - ePrints Archive
Resumo:
Hard and soft: Binding of inorganic Pt@Fe3O4 Janus particles to WS2 nanotubes through their Pt or Fe3O4 domains is governed by the difference in Pearson hardness: the soft Pt block has a higher sulfur affinity than the harder magnetite face; thus the binding proceeds preferentially through the Pt face. This binding preference can be reversed by masking the Pt face with an organic protecting group.
Resumo:
The emission factors of a bus fleet consisting of approximately three hundreds diesel powered buses were measured in a tunnel study under well controlled conditions during a two-day monitoring campaign in Brisbane. The number concentration of particles in the size range 0.017-0.7 m was monitored simultaneously by two Scanning Mobility Particle Sizers located at the tunnel’s entrance and exit. The mean value of the number emission factors was found to be (2.44±1.41)×1014 particles km-1. The results are in good agreement with the emission factors determined from steady-state dynamometer testing of 12 buses from the same Brisbane City bus fleet, thus indicating that when carefully designed, both approaches, the dynamometer and on-road studies, can provide comparable results, applicable for the assessment of the effect of traffic emissions on airborne particle pollution.
Resumo:
As part of a large study investigating indoor air in residential houses in Brisbane, Australia, the purpose of this work was to quantify indoor exposure to submicrometer particles and PM2.5 for the inhabitants of 14 houses. Particle concentrations were measured simultaneously for more than 48 hours in the kitchens of all the houses by using a condensation particle counter (CPC) and a photometer (DustTrak). The occupants of the houses were asked to fill in a diary, noting the time and duration of any activity occurring throughout the house during measurement, as well as their presence or absence from home. From the time series concentration data and the information about indoor activities, exposure to the inhabitants of the houses was calculated for the entire time they spent at home as well as during indoor activities resulting in particle generation. The results show that the highest median concentration level occurred during cooking periods for both particle number concentration (47.5´103 particles cm-3) and PM2.5 concentration (13.4 mg m-3). The highest residential exposure period was the sleeping period for both particle number exposure (31%) and PM2.5 exposure (45.6%). The percentage of the average residential particle exposure level in total 24h particle exposure level was approximating 70% for both particle number and PM2.5 exposure.
Resumo:
The relationship between indoor and outdoor concentration levels of particles in the absence and in the presence of indoor sources has been attracting an increasing level of attention. Understanding of the relationship and the mechanisms driving it, as well as the ability to quantify it, are of importance for assessment of source contribution, assessment of human exposure and for control and management of particles. It became particularly important to address this topic when evidence came from epidemiological studies on the close association between outdoor concentration levels of particles and health effects, yet with many studies showing that indoor concentrations could be significantly higher than those outdoors. This paper presents a summary of an extensive literature review on this topic conducted with an aim to identify general trends in relation to the I/O relationship emerging from studies conducted worldwide. The review considered separately a larger body of papers published on PM10, PM2.5, as well as the smaller database on particle number and number or volume size distribution. A specific focus of this paper is on naturally ventilated houses. The conclusion from the review is that despite the multiplicity of factors that play role in affecting the relationship, there are clear trends emerging in relation to the I/O relationship for particle mass concentration, enabling more general predictions to be made about the relationship. However, more research is still needed on particle number concentration and size distribution.
Resumo:
The aim of this study was to determine the collection efficiency of ultrafine particles into an impinger fitted with a fritted nozzle tip as a means to increase contact surface area between the aerosol and the liquid. The influence of liquid sampling volume, frit porosity and the nature of the sampling liquid was explored and it was shown that all impact on the collection efficiency of particles smaller than 220 nm. Obtained values for overall collection efficiency were substantially higher (~30–95%) than have been previously reported, mainly due to the high deposition of particles in the fritted nozzle tip, especially in case of finer porosity frits and smaller particles. Values for the capture efficiency of the solvent alone ranged from 20 to 45%, depending on the type and the volume of solvent. Additionally, our results show that airstream dispersion into bubbles improves particle trapping by the liquid and that there is a difference in collection efficiencies based on the nature and volume of the solvent used.
Resumo:
The aim of this work was to investigate ultrafine particles (< 0.1 μm) in primary school classrooms, in relation to the classrooms activities. The investigations were conducted in three classrooms during two measuring campaigns, which together encompassed a period of 60 days. Initial investigations showed that under the normal operating conditions of the school there were many occasions in all three classrooms where indoor particle concentrations increased significantly compared to outdoor levels. By far the highest increases in the classroom resulted from art activities (painting, gluing and drawing), at times reaching over 1.4 x 105 particle cm-3. The indoor particle concentrations exceeded outdoor concentrations by approximately one order of magnitude, with a count median diameter ranging from 20-50 nm. Significant increases also occurred during cleaning activities, when detergents were used. GC-MS analysis conducted on 4 samples randomly selected from about 30 different paints and glues, as well as the detergent used in the school, showed that d-limonene was one of the main organic compounds of the detergent, however, it was not detected in the samples of the paints and the glue. Controlled experiments showed that this monoterpene, emitted from the detergent, reacted with O3 (at outdoor ambient concentrations ranging from 0.06-0.08ppm) and formed secondary organic aerosols. Further investigations to identify other liquids which may be potential sources of the precursors of secondary organic aerosols, were outside the scope of this project, however, it is expected that the problem identified by this study could be more widely spread, since most primary schools use liquid materials for art classes, and all schools use detergents for cleaning. Further studies are therefore recommended to better understand this phenomenon and also to minimize school children exposure to ultrafine particles from these indoor sources.
Resumo:
Recent research on particle size distributions and particle concentrations near a busy road cannot be explained by the conventional mechanisms for particle evolution of combustion aerosols. Specifically they appear to be inadequate to explain the experimental observations of particle transformation and the evolution of the total number concentration. This resulted in the development of a new mechanism based on their thermal fragmentation, for the evolution of combustion aerosol nano-particles. A complex and comprehensive pattern of evolution of combustion aerosols, involving particle fragmentation, was then proposed and justified. In that model it was suggested that thermal fragmentation occurs in aggregates of primary particles each of which contains a solid graphite/carbon core surrounded by volatile molecules bonded to the core by strong covalent bonds. Due to the presence of strong covalent bonds between the core and the volatile (frill) molecules, such primary composite particles can be regarded as solid, despite the presence of significant (possibly, dominant) volatile component. Fragmentation occurs when weak van der Waals forces between such primary particles are overcome by their thermal (Brownian) motion. In this work, the accepted concept of thermal fragmentation is advanced to determine whether fragmentation is likely in liquid composite nano-particles. It has been demonstrated that at least at some stages of evolution, combustion aerosols contain a large number of composite liquid particles containing presumably several components such as water, oil, volatile compounds, and minerals. It is possible that such composite liquid particles may also experience thermal fragmentation and thus contribute to, for example, the evolution of the total number concentration as a function of distance from the source. Therefore, the aim of this project is to examine theoretically the possibility of thermal fragmentation of composite liquid nano-particles consisting of immiscible liquid v components. The specific focus is on ternary systems which include two immiscible liquid droplets surrounded by another medium (e.g., air). The analysis shows that three different structures are possible, the complete encapsulation of one liquid by the other, partial encapsulation of the two liquids in a composite particle, and the two droplets separated from each other. The probability of thermal fragmentation of two coagulated liquid droplets is discussed and examined for different volumes of the immiscible fluids in a composite liquid particle and their surface and interfacial tensions through the determination of the Gibbs free energy difference between the coagulated and fragmented states, and comparison of this energy difference with the typical thermal energy kT. The analysis reveals that fragmentation was found to be much more likely for a partially encapsulated particle than a completely encapsulated particle. In particular, it was found that thermal fragmentation was much more likely when the volume ratio of the two liquid droplets that constitute the composite particle are very different. Conversely, when the two liquid droplets are of similar volumes, the probability of thermal fragmentation is small. It is also demonstrated that the Gibbs free energy difference between the coagulated and fragmented states is not the only important factor determining the probability of thermal fragmentation of composite liquid particles. The second essential factor is the actual structure of the composite particle. It is shown that the probability of thermal fragmentation is also strongly dependent on the distance that each of the liquid droplets should travel to reach the fragmented state. In particular, if this distance is larger than the mean free path for the considered droplets in the air, the probability of thermal fragmentation should be negligible. In particular, it follows form here that fragmentation of the composite particle in the state with complete encapsulation is highly unlikely because of the larger distance that the two droplets must travel in order to separate. The analysis of composite liquid particles with the interfacial parameters that are expected in combustion aerosols demonstrates that thermal fragmentation of these vi particles may occur, and this mechanism may play a role in the evolution of combustion aerosols. Conditions for thermal fragmentation to play a significant role (for aerosol particles other than those from motor vehicle exhaust) are determined and examined theoretically. Conditions for spontaneous transformation between the states of composite particles with complete and partial encapsulation are also examined, demonstrating the possibility of such transformation in combustion aerosols. Indeed it was shown that for some typical components found in aerosols that transformation could take place on time scales less than 20 s. The analysis showed that factors that influenced surface and interfacial tension played an important role in this transformation process. It is suggested that such transformation may, for example, result in a delayed evaporation of composite particles with significant water component, leading to observable effects in evolution of combustion aerosols (including possible local humidity maximums near a source, such as a busy road). The obtained results will be important for further development and understanding of aerosol physics and technologies, including combustion aerosols and their evolution near a source.
Resumo:
The influence of biogenic particle formation on climate is a well recognised phenomenon. To understand the mechanisms underlying the biogenic particle formation, determining the chemical composition of the new particles and therefore the species that drive the particle production is of utmost importance. Due to the very small amount of mass involved, indirect approaches are frequently used to infer the composition. We present here the results of such an indirect approach by simultaneously measuring volatile and hygroscopic properties of newly formed particles in a forest environment. It is shown that the particles are composed of both sulphates and organics, with the amount of sulphate component strongly depending on the available gas-phase sulphuric acid, and the organic components having the same volatility and hygroscopicity as photooxidation products of a monoterpene such as α-pinene. Our findings agree with a two-step process through nucleation and cluster formation followed by simultaneous growth by condensation of sulphates and organics that take the particles to climatically relevant sizes.
Resumo:
A 4 week intensive measurement campaign was conducted in March–April 2007 at Agnes Water, a remote coastal site on the east coast of Australia. A Volatility-Hygroscopicity-Tandem Differential Mobility Analyser (VH-TDMA) was used to investigate changes in the hygroscopic properties of ambient particles as volatile components were progressively evaporated. Nine out of 18 VH-TDMA volatility scans detected internally mixed multi-component particles in the nucleation and Aitken modes in clean marine air. Evaporation of a volatile, organic-like component in the VH-TDMA caused significant increases in particle hygroscopicity. In 3 scans the increase in hygroscopicity was so large it was explained by an increase in the absolute volume of water uptake by the particle residuals, and not merely an increase in their relative hygroscopicity. This indicates the presence of organic components that were suppressing the hygroscopic growth of mixed particles on the timescale of humidification in the VH-TDMA (6.5 secs). This observation was supported by ZSR calculations for one scan, which showed that the measured growth factors of mixed particles were up to 18% below those predicted assuming independent water uptake of the individual particle components. The observed suppression of water uptake could be due to a reduced rate of hygroscopic growth caused by the presence of organic films or organic-inorganic interactions in solution droplets that had a negative effect on hygroscopicity.
Resumo:
Airborne measurements of particle number concentrations from biomass burning were conducted in the Northern Territory, Australia, during June and September campaigns in 2003, which is the early and the late dry season in that region. The airborne measurements were performed along horizontal flight tracks, at several heights in order to gain insight into the particle concentration levels and their variation with height within the lower boundary layer (LBL), upper boundary layer (UBL), and also in the free troposphere (FT). The measurements found that the concentration of particles during the early dry season was lower than that for the late dry season. For the June campaign, the concentration of particles in LBL, UBL, and FT were (685 ± 245) particles/cm3, (365 ± 183) particles/cm3, and (495 ± 45) particle/cm3 respectively. For the September campaign, the concentration of particles were found to be (1233 ± 274) particles/cm3 in the LBL, (651 ± 68) particles/cm3 in the UBL, and (568 ± 70) particles/cm3 in the FT. The particle size distribution measurements indicate that during the late dry season there was no change in the particle size distribution below (LBL) and above the boundary layer (UBL). This indicates that there was possibly some penetration of biomass burning particles into the upper boundary layer. In the free troposphere the particle concentration and size measured during both campaigns were approximately the same.