81 resultados para Internal Curing
em Queensland University of Technology - ePrints Archive
Resumo:
This paper presents an experimental study on the effect of presoaked lightweight aggregates (LWAs) for internal curing on water permeability, water absorption and resistance of concrete to chloride-ion penetration in comparison with those of a control concrete and a concrete with shrinkage reducing admixture (SRA) of similar water/cement ratios (w/c). In general, the concretes with LWA particles had initial water absorption, sorptivity and water permeability similar to or lower than those of the control concrete and the concrete with SRA. The charges passed, chloride migration coefficient and chloride diffusion coefficient of such concretes were in the same order as those of the control concrete and the concrete with SRA. However, the incorporation of the LWAs for internal curing reduced unit weight, compressive strength and elastic modulus of the concrete. Comparing the LWAs of different sizes for internal curing, finer particles were more efficient in reducing the shrinkage and generally resulted in less reduction in the unit weight, compressive strength, and elastic modulus. However, the increase in the more porous crushed LW particles in concrete seems to increase the penetration of chloride ions in the concrete. The concrete with SRA had initial water absorption, sorptivity, water permeability and resistance to chloride ion penetration comparable with those of the control concrete. The use of SRA in concrete does not affect the elastic modulus of the concrete, except for a minor influence on the compressive strength of the concrete.
Resumo:
This paper presents an experimental study to evaluate effect of cumulative lightweight aggregate (LWA) content (including lightweight sand) in concrete [water/cement ratio (w/c) = 0.38] on its water absorption, water permeability, and resistance to chloride-ion penetration. Rapid chloride penetrability test (ASTM C 1202), rapid migration test (NT Build 492), and salt ponding test (AASHTO T 259) were conducted to evaluate the concrete resistance to chloride-ion penetration. The results were compared with those of a cement paste and a control normal weight aggregate concrete (NWAC) with the same w/c and a NWAC (w/c = 0.54) with 28-day compressive strength similar to some of the lightweight aggregate concrete (LWAC). Results indicate that although the total charge passed, migration coefficient, and diffusion coefficient of the LWAC were not significantly different from those of NWAC with the same w/c of 0.38, resistance of the LWAC to chloride penetration decreased with increase in the cumulative LWA content in the concretes. The water penetration depth under pressure and water sorptivity showed, in general, similar trends. The LWAC with only coarse LWA had similar water sorptivity, water permeability coefficient, and resistance to chloride-ion penetration compared to NWAC with similar w/c. The LWAC had lower water sorptivity, water permeability and higher resistance to chloride-ion penetration than the NWAC with similar 28-day strength but higher w/c. Both the NWAC and LWAC had lower sorptivity and higher resistance to chloride-ion penetration than the cement paste with similar w/c.
Resumo:
This paper presents an experimental study to evaluate the influence of coarse lightweight aggregate (LWA), fine LWA and the quality of the paste matrix on water absorption and permeability, and resistance to chloride-ion penetration in concrete. The results indicate that incorporation of pre-soaked coarse LWA in concrete increases water sorptivity and permeability slightly compared to normal weight concrete (NWC) of similar water-to-cementitious materials ratio (w/cm). Furthermore, resistance of the sand lightweight concrete (LWC) to water permeability and chloride-ion penetration decreases with an increase in porosity of the coarse LWA. The use of fine LWA including a crushed fraction <1.18 mm reduced resistance of the all-LWC to water and chloride-ion penetration compared with the sand-LWC which has the same coarse LWA. Overall, the quality of the paste matrix was dominant in controlling the transport properties of the concrete, regardless of porosity of the aggregates used. With low w/cm and silica fume, low unit weight LWC (_1300 kg/m3) was produced with a higher resistance to water and chloride-ion penetration compared with NWC and LWC of higher unit weights.
Resumo:
This paper presents an experimental study on the resistance of lightweight aggregate concretes to chloride-ion penetration in comparison to that of normal weight concrete of similar w/c. Salt ponding test (based on AASHTO T 259), rapid chloride permeability test (ASTM C 1202) and rapid migration test (NT Build 492) were carried out to evaluate the concrete resistance to the chloride-ion penetration. Results indicate that in general the resistance of the LWAC to the chloride-ion penetration was in the same order as that of NWAC of similar w/c. However, the increase in cumulative LWA volume and the incorporation of finer LWA particles led to higher charge passed, migration coefficient, and diffusion coefficient. Since the LWACs had lower 28-day compressive strength compared with that of the NWAC of similar w/c, the LWACs may have equal or better resistance to the chloride-ion penetration compared with the NWAC of equivalent strength. The trend of the resistance of concretes to chloride-ion penetration determined by the three test methods was reasonably consistent although there were some discrepancies due to different test methods.
Resumo:
In this present work attempts have been made to study the glass transition temperature of alternative mould materials by using both microwave heating and conventional oven heating. In this present work three epoxy resins, namely R2512, R2515 and R2516, which are commonly used for making injection moulds have been used in combination with two hardeners H2403 and H2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. In order to distinguish the effects between the microwave and conventional heating, a number of experiments were performed to test their mechanical properties such as tensile and flexural strengths. Additionally, differential scanning calorimeter technique was implemented to measure the glass transition temperature on both microwave and conventional heating. This study provided necessary evidences to establish that microwave heated mould materials resulted with higher glass transition temperature than the conventional heating. Finally, attempts were also made to study the microstructure of microwave-cured materials by using a scanning electron microscope in order to analyze the morphology of cured specimens.
Resumo:
The impact of service direction, service training and staff behaviours on perceptions of service delivery are examined. The impact of managerial behaviour in the form of internal market orientation (IMO) on the attitudes of frontline staff towards the firm and its consequent influence on their customer oriented behaviours is also examined. Frontline service staff working in the consumer transport industry were surveyed to provide subjective data about the constructs of interest in this study, and the data were analysed using structural equations modelling employing partial least squares estimation. The data indicate significant relationships between internal market orientation (IMO), the attitudes of the employees to the firm and their consequent behaviour towards customers. Customer orientation, service direction and service training are all identified as antecedents to high levels of service delivery. The study contributes to marketing theory by providing quantitative evidence to support assumptions that internal marketing has an impact on services success. For marketing practitioners, the research findings offer additional information about the management, training and motivation of service staff towards service excellence.
Pregnancy Discrimination in Queensland: Internal Labour Market Issues and Progress to Formal Redress