197 resultados para Information quality
em Queensland University of Technology - ePrints Archive
Resumo:
Social Media (SM) is increasingly being integrated with business information in decision making. Unique characteristics of social media (e.g. wide accessibility, permanence, global audience, recentness, and ease of use) raise new issues with information quality (IQ); quite different from traditional considerations of IQ in information systems (IS) evaluation. This paper presents a preliminary conceptual model of information quality in social media (IQnSM) derived through directed content analysis and employing characteristics of analytic theory in the study protocol. Based in the notion of ‘fitness for use’, IQnSM is highly use and user centric and is defined as “the degree to which information is suitable for doing a specified task by a specific user, in a certain context”. IQnSM is operationalised as hierarchical, formed by the three dimensions (18 measures): intrinsic quality, contextual quality and representational quality. A research plan for empirically validating the model is proposed.
Resumo:
While organizations strive to leverage the vast information generated daily from social media platforms, and decision makers are keen to identify and exploit its value, the quality of this information remains uncertain. Past research on information quality criteria and evaluation issues in social media is largely disparate, incomparable and lacking any common theoretical basis. In attention to this gap, this study adapts existing guidelines and exemplars of construct conceptualization in information systems research, to deductively define information quality and related criteria in the social media context. Building on a notion of information derived from semiotic theory, this paper suggests a general conceptualization of information quality in the social media context that can be used in future research to develop more context specific conceptual models.
Resumo:
This study is the first to employ an epidemiological framework to evaluate the ‘fit-for-purpose’ of ICD-10-AM external cause of injury codes, ambulance and hospital clinical documentation for injury surveillance. Importantly, this thesis develops an evidence-based platform to guide future improvements in routine data collections used to inform the design of effective injury prevention strategies. Quantification of the impact of ambulance clinical records on the overall information quality of Queensland hospital morbidity data collections for injury causal information is a unique and notable contribution of this study.
Resumo:
In the current business world which companies’ competition is very compact in the business arena, quality in manufacturing and providing products and services can be considered as a means of seeking excellence and success of companies in this competition arena. Entering the era of e-commerce and emergence of new production systems and new organizational structures, traditional management and quality assurance systems have been challenged. Consequently, quality information system has been gained a special seat as one of the new tools of quality management. In this paper, quality information system has been studied with a review of the literature of the quality information system, and the role and position of quality Information System (QIS) among other information systems of a organization is investigated. The quality Information system models are analyzed and by analyzing and assessing presented models in quality information system a conceptual and hierarchical model of quality information system is suggested and studied. As a case study the hierarchical model of quality information system is developed by evaluating hierarchical models presented in the field of quality information system based on the Shetabkar Co.
Resumo:
Health Information Exchange (HIE) is an interesting phenomenon. It is a patient centric health and/or medical information management scenario enhanced by integration of Information and Communication Technologies (ICT). While health information systems are repositioning complex system directives, in the wake of the ‘big data’ paradigm, extracting quality information is challenging. It is anticipated that in this talk, ICT enabled healthcare scenarios with big data analytics will be shared. In addition, research and development regarding big data analytics, such as current trends of using these technologies for health care services and critical research challenges when extracting quality of information to improve quality of life will be discussed.
Resumo:
The generic IS-success constructs first identified by DeLone and McLean (1992) continue to be widely employed in research. Yet, recent work by Petter et al (2007) has cast doubt on the validity of many mainstream constructs employed in IS research over the past 3 decades; critiquing the almost universal conceptualization and validation of these constructs as reflective when in many studies the measures appear to have been implicitly operationalized as formative. Cited examples of proper specification of the Delone and McLean constructs are few, particularly in light of their extensive employment in IS research. This paper introduces a four-stage formative construct development framework: Conceive > Operationalize > Respond > Validate (CORV). Employing the CORV framework in an archival analysis of research published in top outlets 1985-2007, the paper explores the extent of possible problems with past IS research due to potential misspecification of the four application-related success dimensions: Individual-Impact, Organizational-Impact, System-Quality and Information-Quality. Results suggest major concerns where there is a mismatch of the Respond and Validate stages. A general dearth of attention to the Operationalize and Respond stages in methodological writings is also observed.
Resumo:
The book within which this chapter appears is published as a research reference book (not a coursework textbook) on Management Information Systems (MIS) for seniors or graduate students in Chinese universities. It is hoped that this chapter, along with the others, will be helpful to MIS scholars and PhD/Masters research students in China who seek understanding of several central Information Systems (IS) research topics and related issues. The subject of this chapter - ‘Evaluating Information Systems’ - is broad, and cannot be addressed in its entirety in any depth within a single book chapter. The chapter proceeds from the truism that organizations have limited resources and those resources need to be invested in a way that provides greatest benefit to the organization. IT expenditure represents a substantial portion of any organization’s investment budget and IT related innovations have broad organizational impacts. Evaluation of the impact of this major investment is essential to justify this expenditure both pre- and post-investment. Evaluation is also important to prioritize possible improvements. The chapter (and most of the literature reviewed herein) admittedly assumes a blackbox view of IS/IT1, emphasizing measures of its consequences (e.g. for organizational performance or the economy) or perceptions of its quality from a user perspective. This reflects the MIS emphasis – a ‘management’ emphasis rather than a software engineering emphasis2, where a software engineering emphasis might be on the technical characteristics and technical performance. Though a black-box approach limits diagnostic specificity of findings from a technical perspective, it offers many benefits. In addition to superior management information, these benefits may include economy of measurement and comparability of findings (e.g. see Part 4 on Benchmarking IS). The chapter does not purport to be a comprehensive treatment of the relevant literature. It does, however, reflect many of the more influential works, and a representative range of important writings in the area. The author has been somewhat opportunistic in Part 2, employing a single journal – The Journal of Strategic Information Systems – to derive a classification of literature in the broader domain. Nonetheless, the arguments for this approach are believed to be sound, and the value from this exercise real. The chapter drills down from the general to the specific. It commences with a highlevel overview of the general topic area. This is achieved in 2 parts: - Part 1 addressing existing research in the more comprehensive IS research outlets (e.g. MISQ, JAIS, ISR, JMIS, ICIS), and Part 2 addressing existing research in a key specialist outlet (i.e. Journal of Strategic Information Systems). Subsequently, in Part 3, the chapter narrows to focus on the sub-topic ‘Information Systems Success Measurement’; then drilling deeper to become even more focused in Part 4 on ‘Benchmarking Information Systems’. In other words, the chapter drills down from Parts 1&2 Value of IS, to Part 3 Measuring Information Systems Success, to Part 4 Benchmarking IS. While the commencing Parts (1&2) are by definition broadly relevant to the chapter topic, the subsequent, more focused Parts (3 and 4) admittedly reflect the author’s more specific interests. Thus, the three chapter foci – value of IS, measuring IS success, and benchmarking IS - are not mutually exclusive, but, rather, each subsequent focus is in most respects a sub-set of the former. Parts 1&2, ‘the Value of IS’, take a broad view, with much emphasis on ‘the business Value of IS’, or the relationship between information technology and organizational performance. Part 3, ‘Information System Success Measurement’, focuses more specifically on measures and constructs employed in empirical research into the drivers of IS success (ISS). (DeLone and McLean 1992) inventoried and rationalized disparate prior measures of ISS into 6 constructs – System Quality, Information Quality, Individual Impact, Organizational Impact, Satisfaction and Use (later suggesting a 7th construct – Service Quality (DeLone and McLean 2003)). These 6 constructs have been used extensively, individually or in some combination, as the dependent variable in research seeking to better understand the important antecedents or drivers of IS Success. Part 3 reviews this body of work. Part 4, ‘Benchmarking Information Systems’, drills deeper again, focusing more specifically on a measure of the IS that can be used as a ‘benchmark’3. This section consolidates and extends the work of the author and his colleagues4 to derive a robust, validated IS-Impact measurement model for benchmarking contemporary Information Systems (IS). Though IS-Impact, like ISS, has potential value in empirical, causal research, its design and validation has emphasized its role and value as a comparator; a measure that is simple, robust and generalizable and which yields results that are as far as possible comparable across time, across stakeholders, and across differing systems and systems contexts.
Resumo:
This study proceeds from a central interest in the importance of systematically evaluating operational large-scale integrated information systems (IS) in organisations. The study is conducted within the IS-Impact Research Track at Queensland University of Technology (QUT). The goal of the IS-Impact Track is, "to develop the most widely employed model for benchmarking information systems in organizations for the joint benefit of both research and practice" (Gable et al, 2009). The track espouses programmatic research having the principles of incrementalism, tenacity, holism and generalisability through replication and extension research strategies. Track efforts have yielded the bicameral IS-Impact measurement model; the ‘impact’ half includes Organisational-Impact and Individual-Impact dimensions; the ‘quality’ half includes System-Quality and Information-Quality dimensions. Akin to Gregor’s (2006) analytic theory, the ISImpact model is conceptualised as a formative, multidimensional index and is defined as "a measure at a point in time, of the stream of net benefits from the IS, to date and anticipated, as perceived by all key-user-groups" (Gable et al., 2008, p: 381). The study adopts the IS-Impact model (Gable, et al., 2008) as its core theory base. Prior work within the IS-Impact track has been consciously constrained to Financial IS for their homogeneity. This study adopts a context-extension strategy (Berthon et al., 2002) with the aim "to further validate and extend the IS-Impact measurement model in a new context - i.e. a different IS - Human Resources (HR)". The overarching research question is: "How can the impacts of large-scale integrated HR applications be effectively and efficiently benchmarked?" This managerial question (Cooper & Emory, 1995) decomposes into two more specific research questions – In the new HR context: (RQ1): "Is the IS-Impact model complete?" (RQ2): "Is the ISImpact model valid as a 1st-order formative, 2nd-order formative multidimensional construct?" The study adhered to the two-phase approach of Gable et al. (2008) to hypothesise and validate a measurement model. The initial ‘exploratory phase’ employed a zero base qualitative approach to re-instantiating the IS-Impact model in the HR context. The subsequent ‘confirmatory phase’ sought to validate the resultant hypothesised measurement model against newly gathered quantitative data. The unit of analysis for the study is the application, ‘ALESCO’, an integrated large-scale HR application implemented at Queensland University of Technology (QUT), a large Australian university (with approximately 40,000 students and 5000 staff). Target respondents of both study phases were ALESCO key-user-groups: strategic users, management users, operational users and technical users, who directly use ALESCO or its outputs. An open-ended, qualitative survey was employed in the exploratory phase, with the objective of exploring the completeness and applicability of the IS-Impact model’s dimensions and measures in the new context, and to conceptualise any resultant model changes to be operationalised in the confirmatory phase. Responses from 134 ALESCO users to the main survey question, "What do you consider have been the impacts of the ALESCO (HR) system in your division/department since its implementation?" were decomposed into 425 ‘impact citations.’ Citation mapping using a deductive (top-down) content analysis approach instantiated all dimensions and measures of the IS-Impact model, evidencing its content validity in the new context. Seeking to probe additional (perhaps negative) impacts; the survey included the additional open question "In your opinion, what can be done better to improve the ALESCO (HR) system?" Responses to this question decomposed into a further 107 citations which in the main did not map to IS-Impact, but rather coalesced around the concept of IS-Support. Deductively drawing from relevant literature, and working inductively from the unmapped citations, the new ‘IS-Support’ construct, including the four formative dimensions (i) training, (ii) documentation, (iii) assistance, and (iv) authorisation (each having reflective measures), was defined as: "a measure at a point in time, of the support, the [HR] information system key-user groups receive to increase their capabilities in utilising the system." Thus, a further goal of the study became validation of the IS-Support construct, suggesting the research question (RQ3): "Is IS-Support valid as a 1st-order reflective, 2nd-order formative multidimensional construct?" With the aim of validating IS-Impact within its nomological net (identification through structural relations), as in prior work, Satisfaction was hypothesised as its immediate consequence. The IS-Support construct having derived from a question intended to probe IS-Impacts, too was hypothesised as antecedent to Satisfaction, thereby suggesting the research question (RQ4): "What is the relative contribution of IS-Impact and IS-Support to Satisfaction?" With the goal of testing the above research questions, IS-Impact, IS-Support and Satisfaction were operationalised in a quantitative survey instrument. Partial least squares (PLS) structural equation modelling employing 221 valid responses largely evidenced the validity of the commencing IS-Impact model in the HR context. ISSupport too was validated as operationalised (including 11 reflective measures of its 4 formative dimensions). IS-Support alone explained 36% of Satisfaction; IS-Impact alone 70%; in combination both explaining 71% with virtually all influence of ISSupport subsumed by IS-Impact. Key study contributions to research include: (1) validation of IS-Impact in the HR context, (2) validation of a newly conceptualised IS-Support construct as important antecedent of Satisfaction, and (3) validation of the redundancy of IS-Support when gauging IS-Impact. The study also makes valuable contributions to practice, the research track and the sponsoring organisation.
Resumo:
Abstract Background The quantum increases in home Internet access and available online health information with limited control over information quality highlight the necessity of exploring decision making processes in accessing and using online information, specifically in relation to children who do not make their health decisions. Objectives To understand the processes explaining parents’ decisions to use online health information for child health care. Methods Parents (N = 391) completed an initial questionnaire assessing the theory of planned behaviour constructs of attitude, subjective norm, and perceived behavioural control, as well as perceived risk, group norm, and additional demographic factors. Two months later, 187 parents completed a follow-up questionnaire assessing their decisions to use online information for their child’s health care, specifically to 1) diagnose and/or treat their child’s suspected medical condition/illness and 2) increase understanding about a diagnosis or treatment recommended by a health professional. Results Hierarchical multiple regression showed that, for both behaviours, attitude, subjective norm, perceived behavioural control, (less) perceived risk, group norm, and (non) medical background were the significant predictors of intention. For parents’ use of online child health information, for both behaviours, intention was the sole significant predictor of behaviour. The findings explain 77% of the variance in parents’ intention to treat/diagnose a child health problem and 74% of the variance in their intentions to increase their understanding about child health concerns. Conclusions Understanding parents’ socio-cognitive processes that guide their use of online information for child health care is important given the increase in Internet usage and the sometimes-questionable quality of health information provided online. Findings highlight parents’ thirst for information; there is an urgent need for health professionals to provide parents with evidence-based child health websites in addition to general population education on how to evaluate the quality of online health information.
Resumo:
Smartphone technology provides free or inexpensive access to mental health and wellbeing resources. As a result the use of mobile applications for these purposes has increased significantly in recent years. Yet, there is currently no app quality assessment alternative to the popular ‘star’-ratings, which are often unreliable. This presentation describes the development of the Mobile Application Rating Scale (MARS) a new measure for classifying and rating the quality of mobile applications. A review of existing literature on app and web quality identified 25 published papers, conference proceedings, and online resources (published since 1999), which identified 372 explicit quality criteria. Qualitative analysis identified five broad categories of app quality rating criteria: engagement, functionality, aesthetics, information quality, and overall satisfaction, which were refined into the 23-item MARS. Independent ratings of 50 randomly selected mental health and wellbeing mobile apps indicated the MARS had excellent levels of internal consistency (α = 0.92) and inter-rater reliability (ICC = 0.85). The MARS provides practitioners and researchers with an easy-to-use, simple, objective and reliable tool for assessing mobile app quality. It also provides mHealth professionals with a checklist for the design and development of high quality apps.
Resumo:
While data quality has been identified as a critical factor associated with enterprise resource planning (ERP) failure, the relationship between ERP stakeholders, the information they require and its relationship to ERP outcomes continues to be poorly understood. Applying stakeholder theory to the problem of ERP performance, we put forward a framework articulating the fundamental differences in the way users differentiate between ERP data quality and utility. We argue that the failure of ERPs to produce significant organisational outcomes can be attributed to conflict between stakeholder groups over whether the data contained within an ERP is of adequate ‘quality’. The framework provides guidance as how to manage data flows between stakeholders, offering insight into each of their specific data requirements. The framework provides support for the idea that stakeholder affiliation dictates the assumptions and core values held by individuals, driving their data needs and their perceptions of data quality and utility.
Resumo:
Background The use of mobile apps for health and well being promotion has grown exponentially in recent years. Yet, there is currently no app-quality assessment tool beyond “star”-ratings. Objective The objective of this study was to develop a reliable, multidimensional measure for trialling, classifying, and rating the quality of mobile health apps. Methods A literature search was conducted to identify articles containing explicit Web or app quality rating criteria published between January 2000 and January 2013. Existing criteria for the assessment of app quality were categorized by an expert panel to develop the new Mobile App Rating Scale (MARS) subscales, items, descriptors, and anchors. There were sixty well being apps that were randomly selected using an iTunes search for MARS rating. There were ten that were used to pilot the rating procedure, and the remaining 50 provided data on interrater reliability. Results There were 372 explicit criteria for assessing Web or app quality that were extracted from 25 published papers, conference proceedings, and Internet resources. There were five broad categories of criteria that were identified including four objective quality scales: engagement, functionality, aesthetics, and information quality; and one subjective quality scale; which were refined into the 23-item MARS. The MARS demonstrated excellent internal consistency (alpha = .90) and interrater reliability intraclass correlation coefficient (ICC = .79). Conclusions The MARS is a simple, objective, and reliable tool for classifying and assessing the quality of mobile health apps. It can also be used to provide a checklist for the design and development of new high quality health apps.
Resumo:
This study is conducted within the IS-Impact Research Track at Queensland University of Technology (QUT). The goal of the IS-Impact Track is, "to develop the most widely employed model for benchmarking information systems in organizations for the joint benefit of both research and practice" (Gable et al, 2006). IS-Impact is defined as "a measure at a point in time, of the stream of net benefits from the IS [Information System], to date and anticipated, as perceived by all key-user-groups" (Gable Sedera and Chan, 2008). Track efforts have yielded the bicameral IS-Impact measurement model; the "impact" half includes Organizational-Impact and Individual-Impact dimensions; the "quality" half includes System-Quality and Information-Quality dimensions. The IS-Impact model, by design, is intended to be robust, simple and generalisable, to yield results that are comparable across time, stakeholders, different systems and system contexts. The model and measurement approach employs perceptual measures and an instrument that is relevant to key stakeholder groups, thereby enabling the combination or comparison of stakeholder perspectives. Such a validated and widely accepted IS-Impact measurement model has both academic and practical value. It facilitates systematic operationalisation of a main dependent variable in research (IS-Impact), which can also serve as an important independent variable. For IS management practice it provides a means to benchmark and track the performance of information systems in use. From examination of the literature, the study proposes that IS-Impact is an Analytic Theory. Gregor (2006) defines Analytic Theory simply as theory that ‘says what is’, base theory that is foundational to all other types of theory. The overarching research question thus is "Does IS-Impact positively manifest the attributes of Analytic Theory?" In order to address this question, we must first answer the question "What are the attributes of Analytic Theory?" The study identifies the main attributes of analytic theory as: (1) Completeness, (2) Mutual Exclusivity, (3) Parsimony, (4) Appropriate Hierarchy, (5) Utility, and (6) Intuitiveness. The value of empirical research in Information Systems is often assessed along the two main dimensions - rigor and relevance. Those Analytic Theory attributes associated with the ‘rigor’ of the IS-Impact model; namely, completeness, mutual exclusivity, parsimony and appropriate hierarchy, have been addressed in prior research (e.g. Gable et al, 2008). Though common tests of rigor are widely accepted and relatively uniformly applied (particularly in relation to positivist, quantitative research), attention to relevance has seldom been given the same systematic attention. This study assumes a mainly practice perspective, and emphasises the methodical evaluation of the Analytic Theory ‘relevance’ attributes represented by the Utility and Intuitiveness of the IS-Impact model. Thus, related research questions are: "Is the IS-Impact model intuitive to practitioners?" and "Is the IS-Impact model useful to practitioners?" March and Smith (1995), identify four outputs of Design Science: constructs, models, methods and instantiations (Design Science research may involve one or more of these). IS-Impact can be viewed as a design science model, composed of Design Science constructs (the four IS-Impact dimensions and the two model halves), and instantiations in the form of management information (IS-Impact data organised and presented for management decision making). In addition to methodically evaluating the Utility and Intuitiveness of the IS-Impact model and its constituent constructs, the study aims to also evaluate the derived management information. Thus, further research questions are: "Is the IS-Impact derived management information intuitive to practitioners?" and "Is the IS-Impact derived management information useful to practitioners? The study employs a longitudinal design entailing three surveys over 4 years (the 1st involving secondary data) of the Oracle-Financials application at QUT, interspersed with focus groups involving senior financial managers. The study too entails a survey of Financials at four other Australian Universities. The three focus groups respectively emphasise: (1) the IS-Impact model, (2) the 2nd survey at QUT (descriptive), and (3) comparison across surveys within QUT, and between QUT and the group of Universities. Aligned with the track goal of producing IS-Impact scores that are highly comparable, the study also addresses the more specific utility-related questions, "Is IS-Impact derived management information a useful comparator across time?" and "Is IS-Impact derived management information a useful comparator across universities?" The main contribution of the study is evidence of the utility and intuitiveness of IS-Impact to practice, thereby further substantiating the practical value of the IS-Impact approach; and also thereby motivating continuing and further research on the validity of IS-Impact, and research employing the ISImpact constructs in descriptive, predictive and explanatory studies. The study also has value methodologically as an example of relatively rigorous attention to relevance. A further key contribution is the clarification and instantiation of the full set of analytic theory attributes.