153 resultados para Image colour analysis
em Queensland University of Technology - ePrints Archive
Resumo:
The commercialization of aerial image processing is highly dependent on the platforms such as UAVs (Unmanned Aerial Vehicles). However, the lack of an automated UAV forced landing site detection system has been identified as one of the main impediments to allow UAV flight over populated areas in civilian airspace. This article proposes a UAV forced landing site detection system that is based on machine learning approaches including the Gaussian Mixture Model and the Support Vector Machine. A range of learning parameters are analysed including the number of Guassian mixtures, support vector kernels including linear, radial basis function Kernel (RBF) and polynormial kernel (poly), and the order of RBF kernel and polynormial kernel. Moreover, a modified footprint operator is employed during feature extraction to better describe the geometric characteristics of the local area surrounding a pixel. The performance of the presented system is compared to a baseline UAV forced landing site detection system which uses edge features and an Artificial Neural Network (ANN) region type classifier. Experiments conducted on aerial image datasets captured over typical urban environments reveal improved landing site detection can be achieved with an SVM classifier with an RBF kernel using a combination of colour and texture features. Compared to the baseline system, the proposed system provides significant improvement in term of the chance to detect a safe landing area, and the performance is more stable than the baseline in the presence of changes to the UAV altitude.
Resumo:
Treatment plans for conformal radiotherapy are based on an initial CT scan. The aim is to deliver the prescribed dose to the tumour, while minimising exposure to nearby organs. Recent advances make it possible to also obtain a Cone-Beam CT (CBCT) scan, once the patient has been positioned for treatment. A statistical model will be developed to compare these CBCT scans with the initial CT scan. Changes in the size, shape and position of the tumour and organs will be detected and quantified. Some progress has already been made in segmentation of prostate CBCT scans [1],[2],[3]. However, none of the existing approaches have taken full advantage of the prior information that is available. The planning CT scan is expertly annotated with contours of the tumour and nearby sensitive objects. This data is specific to the individual patient and can be viewed as a snapshot of spatial information at a point in time. There is an abundance of studies in the radiotherapy literature that describe the amount of variation in the relevant organs between treatments. The findings from these studies can form a basis for estimating the degree of uncertainty. All of this information can be incorporated as an informative prior into a Bayesian statistical model. This model will be developed using scans of CT phantoms, which are objects with known geometry. Thus, the accuracy of the model can be evaluated objectively. This will also enable comparison between alternative models.
Resumo:
Field robots often rely on laser range finders (LRFs) to detect obstacles and navigate autonomously. Despite recent progress in sensing technology and perception algorithms, adverse environmental conditions, such as the presence of smoke, remain a challenging issue for these robots. In this paper, we investigate the possibility to improve laser-based perception applications by anticipating situations when laser data are affected by smoke, using supervised learning and state-of-the-art visual image quality analysis. We propose to train a k-nearest-neighbour (kNN) classifier to recognise situations where a laser scan is likely to be affected by smoke, based on visual data quality features. This method is evaluated experimentally using a mobile robot equipped with LRFs and a visual camera. The strengths and limitations of the technique are identified and discussed, and we show that the method is beneficial if conservative decisions are the most appropriate.
Resumo:
Advances in symptom management strategies through a better understanding of cancer symptom clusters depend on the identification of symptom clusters that are valid and reliable. The purpose of this exploratory research was to investigate alternative analytical approaches to identify symptom clusters for patients with cancer, using readily accessible statistical methods, and to justify which methods of identification may be appropriate for this context. Three studies were undertaken: (1) a systematic review of the literature, to identify analytical methods commonly used for symptom cluster identification for cancer patients; (2) a secondary data analysis to identify symptom clusters and compare alternative methods, as a guide to best practice approaches in cross-sectional studies; and (3) a secondary data analysis to investigate the stability of symptom clusters over time. The systematic literature review identified, in 10 years prior to March 2007, 13 cross-sectional studies implementing multivariate methods to identify cancer related symptom clusters. The methods commonly used to group symptoms were exploratory factor analysis, hierarchical cluster analysis and principal components analysis. Common factor analysis methods were recommended as the best practice cross-sectional methods for cancer symptom cluster identification. A comparison of alternative common factor analysis methods was conducted, in a secondary analysis of a sample of 219 ambulatory cancer patients with mixed diagnoses, assessed within one month of commencing chemotherapy treatment. Principal axis factoring, unweighted least squares and image factor analysis identified five consistent symptom clusters, based on patient self-reported distress ratings of 42 physical symptoms. Extraction of an additional cluster was necessary when using alpha factor analysis to determine clinically relevant symptom clusters. The recommended approaches for symptom cluster identification using nonmultivariate normal data were: principal axis factoring or unweighted least squares for factor extraction, followed by oblique rotation; and use of the scree plot and Minimum Average Partial procedure to determine the number of factors. In contrast to other studies which typically interpret pattern coefficients alone, in these studies symptom clusters were determined on the basis of structure coefficients. This approach was adopted for the stability of the results as structure coefficients are correlations between factors and symptoms unaffected by the correlations between factors. Symptoms could be associated with multiple clusters as a foundation for investigating potential interventions. The stability of these five symptom clusters was investigated in separate common factor analyses, 6 and 12 months after chemotherapy commenced. Five qualitatively consistent symptom clusters were identified over time (Musculoskeletal-discomforts/lethargy, Oral-discomforts, Gastrointestinaldiscomforts, Vasomotor-symptoms, Gastrointestinal-toxicities), but at 12 months two additional clusters were determined (Lethargy and Gastrointestinal/digestive symptoms). Future studies should include physical, psychological, and cognitive symptoms. Further investigation of the identified symptom clusters is required for validation, to examine causality, and potentially to suggest interventions for symptom management. Future studies should use longitudinal analyses to investigate change in symptom clusters, the influence of patient related factors, and the impact on outcomes (e.g., daily functioning) over time.
Resumo:
The use of appropriate features to represent an output class or object is critical for all classification problems. In this paper, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of image-objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSF) of a pulse coupled neural network (PCNN), which is invariant to rotation, translation and small scale changes. The proposed method is first evaluated in a rotation and scale invariant texture classification using USC-SIPI texture database. It is further evaluated in an application of vegetation species classification in power line corridor monitoring using airborne multi-spectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective to represent spectral-texture patterns of objects and it shows better results than classic color histogram and texture features.
Resumo:
A new technique is proposed for learning the dynamic characteristics of a deformable object, applied in particular to the problem of lip-tracking. Experimental results are given which demonstrate that the use of dynamic models allows the system to track more robustly under adverse conditions and to correct spurious, poorly tracked frames
Resumo:
In order to drive sustainable financial profitability, service firms make significant investments in creating service environments that consumers will prefer over the environments of their competitors. To date, servicescape research is over-focused on understanding consumers’ emotional and physiological responses to servicescape attributes, rather than taking a holistic view of how consumers cognitively interpret servicescapes. This thesis argues that consumers will cognitively ascribe symbolic meanings to servicescapes and then evaluate if those meanings are congruent with their sense of Self in order to form a preference for a servicescape. Consequently, this thesis takes a Self Theory approach to servicescape symbolism to address the following broad research question: How do ascribed symbolic meanings influence servicescape preference? Using a three-study, mixed-method approach, this thesis investigates the symbolic meanings consumers ascribe to servicescapes and empirically tests whether the joint effects of congruence between consumer Self and the symbolic meanings ascribed to servicescapes influence consumers’ servicescape preference. First, Study One identifies the symbolic meanings ascribed to salient servicescape attributes using a combination of repertory tests and laddering techniques within 19 semi-structured individual depth interviews. Study Two modifies an existing scale to create a symbolic servicescape meaning scale in order to measure the symbolic meanings ascribed to servicescapes. Finally, Study Three utilises the Self-Congruity Model to empirically examine the joint effects of consumer Self and servicescape on consumers’ preference for servicescapes. Using polynomial regression with response surface analysis, 14 joint effect models demonstrate that both Self-Servicescape incongruity and congruity influence consumers’ preference for servicescapes. Combined, the findings of three studies suggest that the symbolic meanings ascribed to servicescapes and their (in)congruities with consumers’ sense of self can be used to predict consumers’ preferences for servicescapes. These findings have several key theoretical and practical contributions to services marketing.
Resumo:
This paper presents two algorithms to automate the detection of marine species in aerial imagery. An algorithm from an initial pilot study is presented in which morphology operations and colour analysis formed the basis of its working principle. A second approach is presented in which saturation channel and histogram-based shape profiling were used. We report on performance for both algorithms using datasets collected from an unmanned aerial system at an altitude of 1000 ft. Early results have demonstrated recall values of 48.57% and 51.4%, and precision values of 4.01% and 4.97%.
Resumo:
It has been proposed that body image disturbance is a form of cognitive bias wherein schemas for self-relevant information guide the selective processing of appearancerelated information in the environment. This threatening information receives disproportionately more attention and memory, as measured by an Emotional Stroop and incidental recall task. The aim of this thesis was to expand the literature on cognitive processing biases in non-clinical males and females by incorporating a number of significant methodological refinements. To achieve this aim, three phases of research were conducted. The initial two phases of research provided preliminary data to inform the development of the main study. Phase One was a qualitative exploration of body image concerns amongst males and females recruited through the general community and from a university. Seventeen participants (eight male; nine female) provided information on their body image and what factors they saw as positively and negatively impacting on their self evaluations. The importance of self esteem, mood, health and fitness, and recognition of the social ideal were identified as key themes. These themes were incorporated as psycho-social measures and Stroop word stimuli in subsequent phases of the research. Phase Two involved the selection and testing of stimuli to be used in the Emotional Stroop task. Six experimental categories of words were developed that reflected a broad range of health and body image concerns for males and females. These categories were high and low calorie food words, positive and negative appearance words, negative emotion words, and physical activity words. Phase Three addressed the central aim of the project by examining cognitive biases for body image information in empirically defined sub-groups. A National sample of males (N = 55) and females (N = 144), recruited from the general community and universities, completed an Emotional Stroop task, incidental memory test, and a collection of psycho-social questionnaires. Sub-groups of body image disturbance were sought using a cluster analysis, which identified three sub-groups in males (Normal, Dissatisfied, and Athletic) and four sub-groups in females (Normal, Health Conscious, Dissatisfied, and Symptomatic). No differences were noted between the groups in selective attention, although time taken to colour name the words was associated with some of the psycho-social variables. Memory biases found across the whole sample for negative emotion, low calorie food, and negative appearance words were interpreted as reflecting the current focus on health and stigma against being unattractive. Collectively these results have expanded our understanding of processing biases in the general community by demonstrating that the processing biases are found within non-clinical samples and that not all processing biases are associated with negative functionality
Resumo:
Isolating the impact of a colour, or a combination of colours, is extremely difficult to achieve because it is difficult to remove other environmental elements such as sound, odours, light, and occasion from the experience of being in a place. In order to ascertain the impact of colour on how we interpret the world in day to day situations, the current study records participant responses to achromatic scenes of the built environment prior to viewing the same scene in colour. A number of environments were photographed in colour or copied from design books; and copies of the images saved as both colour and black/grey/white. An overview of the study will be introduced by firstly providing examples of studies which have linked colour to meaning and emotions. For example, yellow is said to be connected to happiness1 ; or red evokes feelings of anger2 or passion. A link between colour and the way we understand and/or feel is established however, there is a further need for knowledge of colour in context. In response to this need, the current achromatic/chromatic environmental study will be described and discussed in light of the findings. Finally, suggestions for future research are posed. Based on previous research the authors hypothesised that a shift in environmental perception by participants would occur. It was found that the impact of colour includes a shift in perception of aspects such as its atmosphere and youthfulness. Through studio-class discussions it was also noted that the predicted age of the place, the function, and in association, the potential users when colour was added (or deleted) were often challenged. It is posited that the ability of a designer (for example, interior designer, architect, or landscape architect) to design for a particular target group—user and/or clients will be enhanced through more targeted studies relating colour in situ. The importance of noting the perceptual shift for the participants in our study, who were young designers, is the realisation that colour potentially holds the power to impact on the identity of an architectural form, an interior space, and/or particular elements such as doorways, furniture settings, and the like.
Resumo:
Precise, up-to-date and increasingly detailed road maps are crucial for various advanced road applications, such as lane-level vehicle navigation, and advanced driver assistant systems. With the very high resolution (VHR) imagery from digital airborne sources, it will greatly facilitate the data acquisition, data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lane information from aerial images with employment of the object-oriented image analysis method. Our proposed algorithm starts with constructing the DSM and true orthophotos from the stereo images. The road lane details are detected using an object-oriented rule based image classification approach. Due to the affection of other objects with similar spectral and geometrical attributes, the extracted road lanes are filtered with the road surface obtained by a progressive two-class decision classifier. The generated road network is evaluated using the datasets provided by Queensland department of Main Roads. The evaluation shows completeness values that range between 76% and 98% and correctness values that range between 82% and 97%.