340 resultados para ICT training
em Queensland University of Technology - ePrints Archive
Resumo:
Queensland University of Technology (QUT) is a large multidisciplinary university located in Brisbane, Queensland, Australia. QUT is increasing its research focus and is developing its research support services. It has adopted a model of collaboration between the Library, High Performance Computing and Research Support (HPC) and more broadly with Information Technology Services (ITS). Research support services provided by the Library include the provision of information resources and discovery services, bibliographic management software, assistance with publishing (publishing strategies, identifying high impact journals, dealing with publishers and the peer review process), citation analysis and calculating authors’ H Index. Research data management services are being developed by the Library and HPC working in collaboration. The HPC group within ITS supports research computing infrastructure, research development and engagement activities, researcher consultation, high speed computation and data storage systems , 2D/ 3D (immersive) visualisation tools, parallelisation and optimization of research codes, statistics/ data modeling training and support (both qualitative and quantitative) and support for the university’s central Access Grid collaboration facility. Development and engagement activities include participation in research grants and papers, student supervision and internships and the sponsorship, incubation and adoption of new computing technologies for research. ITS also provides other services that support research including ICT training, research infrastructure (networking, data storage, federated access and authorization, virtualization) and corporate systems for research administration. Seminars and workshops are offered to increase awareness and uptake of new and existing services. A series of online surveys on eResearch practices and skills and a number of focus groups was conducted to better inform the development of research support services. Progress towards the provision of research support is described within the context organizational frameworks; resourcing; infrastructure; integration; collaboration; change management; engagement; awareness and skills; new services; and leadership. Challenges to be addressed include the need to redeploy existing operational resources toward new research support services, supporting a rapidly growing research profile across the university, the growing need for the use and support of IT in research programs, finding capacity to address the diverse research support needs across the disciplines, operationalising new research support services following their implementation in project mode, embedding new specialist staff roles, cross-skilling Liaison Librarians, and ensuring continued collaboration between stakeholders.
Resumo:
Youth population is increasing explosively particularly in developing countries as a result of rapid urbanization. This increase is bringing large number of social and economic problems. For instance the impacts of job and training availability, and the physical, social and cultural quality of urban environment on young people are enormous, and affect their health, lifestyles, and well-being (Gleeson and Sipe 2006). Besides this, globalization and technological developments are affecting youth in urban areas in all parts of the world, both positively and negatively (Robertson 1995). The rapidly advancing information and communications technologies (ICTs) helps in addressing social and economic problems caused by the rapid growth of urban youth populations in developing countries. ICTs offer opportunities to young people for learning, skill development and employment. But there are downsides: young people in many developing countries lack of having broad access to these new technologies, they are vulnerable to global market changes, and ICTs link them into global cultures which promote consumer goods, potentially eroding local cultures and community values (Manacorda and Petrongolo 1999). However we believe that the positives outweigh such negatives. At the beginning of the twenty-first century, the world’s young population number more than they ever have. There are over a billion young people between the ages of 15 and 24, which 85 per cent of them live in developing countries and mainly in urban environments. Many of these young people are in the process of making, or have already made, the transition from school to work. During the last two decades all around the world, these young people, as new workers, have faced a number of challenges associated with globalization and technological advances on labour markets (United Nations 2004). The continuous decrease in the manufacturing employment is made many of the young people facing three options: getting jobs in the informal economy with insecurity and poor wages and working conditions, or getting jobs in the low-tier service industries, or developing their vocational skills to benefit from new opportunities in the professional and advanced technical/knowledge sectors. Moreover in developing countries a large portion of young people are not even lucky enough to choose among any of these options, and consequently facing long-term unemployment, which makes them highly vulnerable. The United Nations’ World Youth Employment report (2004) indicates that in almost all countries, females tend to be far more vulnerable than males in terms of long-term unemployment, and young people who have advanced qualifications are far less likely to experience long-term unemployment than others. In the limited opportunities of the formal labour market, those with limited vocational skills resort to forced entrepreneurship and selfemployment in the informal economy, often working for low pay under hazardous conditions, with only few prospects for the future (United Nations 2005a). The International Labour Organization’s research (2004) revealed that the labour force participation rates for young people decreased by almost four per cent (which is equivalent of 88 million young people) between 1993 and 2003. This is largely as a result of the increased number of young people attending school, high overall unemployment rates, and the fact that some young people gave up any hope of finding work and dropped out of the labour market. At the regional level, youth unemployment was highest in Middle East and North Africa (MENA) (25.6%) and sub-Saharan Africa (21%) and lowest in East Asia (7%) and the industrialized economies(13.4%) (International Labour Organization 2004). The youth in economically disadvantaged regions (e.g. the MENA region) face many challenges in education and training that delivers them the right set of skills and knowledge demanded by the labour market. As a consequence, the transition from school to work is mostly unsuccessful and young population end up either unemployed or underemployed in the informal sectors (United Nations 2005b). Unemployment and lack of economic prospects of the urban youth are pushing many of them into criminal acts, excessive alcohol use, substance addiction, and also in many cases resulting in processes of social or political violence (Fernandez-Maldonado 2004; United Nations 2005a). Long-term unemployment leads young people in a process of marginalisation and social exclusion (United Nations 2004). The sustained high rates of long-term youth unemployment have a number of negative effects on societies. First, it results in countries failing to take advantage of the human resources to increase their productive potential, at a time of transition to a globalized world that inexorably demands such leaps in productive capacity. Second, it reinforces the intergenerational transmission of poverty. Third, owing to the discrepancy between more education and exposure to the mass media and fewer employment opportunities, it may encourage the spread of disruptive behaviours, recourse to illegal alternatives for generating income and the loss of basic societal values, all of which erode public safety and social capital. Fourth, it may trigger violent and intractable political conflicts. And lastly, it may exacerbate intergenerational conflicts when young people perceive a lack of opportunity and meritocracy in a system that favours adults who have less formal education and training but more wealth, power and job stability (Hopenhayn 2002). To assist in addressing youth’s skill training and employment problems this paper scrutinises useful international practices, policies, initiatives and programs targeting youth skill training, particularly in ICTs. The MENA national governments and local authorities could consider implementing similar initiative and strategies to address some of the youth employment issues. The broader aim of this paper is to investigate the successful practice and strategies for the information and communication related income generation opportunities for young people to: promote youth entrepreneurship; promote public-private partnerships; target vulnerable groups of young people; narrow digital divide; and put young people in charge. The rest of this paper is organised in five parts. First, the paper provides an overview of the literature on the knowledge economy, skill, education and training issues. Secondly, it reviews the role of ICTs for vocational skill development and employability. Thirdly, it discusses the issues surrounding the development of the digital divide. Fourthly, the paper underlines types and the importance of developing ICT initiatives targeting young people, and reviews some of the successful policy implementations on ICT-based initiatives from both developed and developing countries that offer opportunities to young people for learning, skill development and employment. Then the paper concludes by providing useful generalised recommendations for the MENA region countries and cities in: advocating possible opportunities for ICT generated employment for young people; and discussing how ICT policies could be modified and adopted to meet young people’s needs.
Resumo:
This report looks at opportunities in relation to what is either already available or starting to take off in Information and Communication Technology (ICT). ICT focuses on the entire system of information, communication, processes and knowledge within an organisation. It focuses on how technology can be implemented to serve the information and communication needs of people and organisations. An ICT system involves a combination of work practices, information, people and a range of technologies and applications organised to make the business or organisation fully functional and efficient, and to accomplish goals in an organisation. Our focus is on vocational, workbased education in New Zealand. It is not about eLearning, although we briefly touch on the topic. We provide a background on vocational education in New Zealand, cover what we consider to be key trends impacting workbased, vocational education and training (VET), and offer practical suggestions for leveraging better value from ICT initiatives across the main activities of an Industry Training Organisation (ITO). We use a learning value chain approach to demonstrate the main functions ITOs engage in and also use this approach as the basis for developing and prioritising an ICT strategy. Much of what we consider in this report is applicable to the wider tertiary education sector as it relates to life-long learning. We consider ICT as an enabler that: a) connects education businesses (all types including tertiary education institutions) to learners, their career decisions and their learning, and as well, b) enables those same businesses to run more efficiently. We suggest that these two sets of activities are considered as interconnected parts of the same education or training business ICT strategy.
Resumo:
Our survey findings confirm that 11 factors influence information and communication technology (ICT) diffusion for experienced ICT users. We offer a model that consists of 4 groups of categories: management (M); individual (I); technology (T); and environment (E). Our conclusions reinforce the importance of a coherent ICT diffusion strategy and supportive environment. This requires substantial investment in training and collegial learning support mechanisms. This paper provides an overview of the work undertaken and an analysis of its implications for the construction industry and we provide useful insights that a wide range of construction industry professionals and contractors may find useful.
Resumo:
Curriculum demands continue to increase on school education systems with teachers at the forefront of implementing syllabus requirements. Education is reported frequently as a solution to most societal problems and, as a result of the world’s information explosion, teachers are expected to cover more and more within teaching programs. How can teachers combine subjects in order to capitalise on the competing educational agendas within school timeframes? Fusing curricula requires the bonding of standards from two or more syllabuses. Both technology and ICT complement the learning of science. This study analyses selected examples of preservice teachers’ overviews for fusing science, technology and ICT. These program overviews focused on primary students and the achievement of two standards (one from science and one from either technology or ICT). These primary preservice teachers’ fused-curricula overviews included scientific concepts and related technology and/or ICT skills and knowledge. Findings indicated a range of innovative curriculum plans for teaching primary science through technology and ICT, demonstrating that these subjects can form cohesive links towards achieving the respective learning standards. Teachers can work more astutely by fusing curricula; however further professional development may be required to advance thinking about these processes. Bonding subjects through their learning standards can extend beyond previous integration or thematic work where standards may not have been assessed. Education systems need to articulate through syllabus documents how effective fusing of curricula can be achieved. It appears that education is a key avenue for addressing societal needs, problems and issues. Education is promoted as a universal solution, which has resulted in curriculum overload (Dare, Durand, Moeller, & Washington, 1997; Vinson, 2001). Societal and curriculum demands have placed added pressure on teachers with many extenuating education issues increasing teachers’ workloads (Mobilise for Public Education, 2002). For example, as Australia has weather conducive for outdoor activities, social problems and issues arise that are reported through the media calling for action; consequently schools have been involved in swimming programs, road and bicycle safety programs, and a wide range of activities that had been considered a parental responsibility in the past. Teachers are expected to plan, implement and assess these extra-curricula activities within their already overcrowded timetables. At the same stage, key learning areas (KLAs) such as science and technology are mandatory requirements within all Australian education systems. These systems have syllabuses outlining levels of content and the anticipated learning outcomes (also known as standards, essential learnings, and frameworks). Time allocated for teaching science in obviously an issue. In 2001, it was estimated that on average the time spent in teaching science in Australian Primary Schools was almost an hour per week (Goodrum, Hackling, & Rennie, 2001). More recently, a study undertaken in the U.S. reported a similar finding. More than 80% of the teachers in K-5 classrooms spent less than an hour teaching science (Dorph, Goldstein, Lee, et al., 2007). More importantly, 16% did not spend teaching science in their classrooms. Teachers need to learn to work smarter by optimising the use of their in-class time. Integration is proposed as one of the ways to address the issue of curriculum overload (Venville & Dawson, 2005; Vogler, 2003). Even though there may be a lack of definition for integration (Hurley, 2001), curriculum integration aims at covering key concepts in two or more subject areas within the same lesson (Buxton & Whatley, 2002). This implies covering the curriculum in less time than if the subjects were taught separately; therefore teachers should have more time to cover other educational issues. Expectedly, the reality can be decidedly different (e.g., Brophy & Alleman, 1991; Venville & Dawson, 2005). Nevertheless, teachers report that students expand their knowledge and skills as a result of subject integration (James, Lamb, Householder, & Bailey, 2000). There seems to be considerable value for integrating science with other KLAs besides aiming to address teaching workloads. Over two decades ago, Cohen and Staley (1982) claimed that integration can bring a subject into the primary curriculum that may be otherwise left out. Integrating science education aims to develop a more holistic perspective. Indeed, life is not neat components of stand-alone subjects; life integrates subject content in numerous ways, and curriculum integration can assist students to make these real-life connections (Burnett & Wichman, 1997). Science integration can provide the scope for real-life learning and the possibility of targeting students’ learning styles more effectively by providing more than one perspective (Hudson & Hudson, 2001). To illustrate, technology is essential to science education (Blueford & Rosenbloom, 2003; Board of Studies, 1999; Penick, 2002), and constructing technology immediately evokes a social purpose for such construction (Marker, 1992). For example, building a model windmill requires science and technology (Zubrowski, 2002) but has a key focus on sustainability and the social sciences. Science has the potential to be integrated with all KLAs (e.g., Cohen & Staley, 1982; Dobbs, 1995; James et al., 2000). Yet, “integration” appears to be a confusing term. Integration has an educational meaning focused on special education students being assimilated into mainstream classrooms. The word integration was used in the late seventies and generally focused around thematic approaches for teaching. For instance, a science theme about flight only has to have a student drawing a picture of plane to show integration; it did not connect the anticipated outcomes from science and art. The term “fusing curricula” presents a seamless bonding between two subjects; hence standards (or outcomes) need to be linked from both subjects. This also goes beyond just embedding one subject within another. Embedding implies that one subject is dominant, while fusing curricula proposes an equal mix of learning within both subject areas. Primary education in Queensland has eight KLAs, each with its established content and each with a proposed structure for levels of learning. Primary teachers attempt to cover these syllabus requirements across the eight KLAs in less than five hours a day, and between many of the extra-curricula activities occurring throughout a school year (e.g., Easter activities, Education Week, concerts, excursions, performances). In Australia, education systems have developed standards for all KLAs (e.g., Education Queensland, NSW Department of Education and Training, Victorian Education) usually designated by a code. In the late 1990’s (in Queensland), “core learning outcomes” for strands across all KLA’s. For example, LL2.1 for the Queensland Education science syllabus means Life and Living at Level 2 standard number 1. Thus, a teacher’s planning requires the inclusion of standards as indicated by the presiding syllabus. More recently, the core learning outcomes were replaced by “essential learnings”. They specify “what students should be taught and what is important for students to have opportunities to know, understand and be able to do” (Queensland Studies Authority, 2009, para. 1). Fusing science education with other KLAs may facilitate more efficient use of time and resources; however this type of planning needs to combine standards from two syllabuses. To further assist in facilitating sound pedagogical practices, there are models proposed for learning science, technology and other KLAs such as Bloom’s Taxonomy (Bloom, 1956), Productive Pedagogies (Education Queensland, 2004), de Bono’s Six Hats (de Bono, 1985), and Gardner’s Multiple Intelligences (Gardner, 1999) that imply, warrant, or necessitate fused curricula. Bybee’s 5 Es, for example, has five levels of learning (engage, explore, explain, elaborate, and evaluate; Bybee, 1997) can have the potential for fusing science and ICT standards.
Resumo:
This report focuses on blended learning within the Queensland University of Technology (QUT) which is one of Australia’s largest public universities. Although the university in its current format was established in 1989, it contains several previous institutions that can be traced to the earliest forms of technical and teacher education in Queensland in the 19th century (Kyle et al., 1999). The focal point of the report is the experience of QUT’s Faculty of Education which was formed from the amalgamation of several teacher training colleges servicing pre-school and kindergarten, primary and secondary teacher education. While the broader university currently employs approximately 4,000 staff and has about 40,000 students, QUT’s Faculty of Education employs around 170 staff and has approximately 5,000 enrolled students. The Faculty of Education at QUT is the largest provider of pre-service teacher education in Australia and is one of the largest producers of educational research. A major theme of the Faculty of Education is its focus on education and research that provides teachers, schools and educational authorities with practical solutions to the multifaceted issues facing contemporary education.
Resumo:
This paper presents findings from the SiMERR National Survey concerning the need priorities of secondary ICT teachers for professional development, resources and student learning experiences. The findings - drawn from a survey of 237 secondary ICT teachers across Australia - provide an opportunity to compare the needs of teachers working in metropolitan, provincial and remote schools. The study found that vacant ICT positions are difficult to fill ond that the novel on dynamic nature of ICT requires teachers to have more extensive opportunities for on-the-job training, collegial collaboration and mentoring than is the case for teachers of more traditional subjects like science and mathematics. The study also found that ICT teachers are commonly required to manage and maintain ICT resources and to assist other staff to use ICT resources, while being allocated insufficient time in which to do these additional activities. The implications of these and other findings are discussed along with recommendations to help address the needs of ICT teachers in different parts of Australia.
Resumo:
The measurement of ICT (information and communication technology) integration is emerging as an area of research interest with such systems as Education Queensland including it in their recently released list of research priorities. Studies to trial differing integration measurement instruments have taken place within Australia in the last few years, particularly Western Australia (Trinidad, Clarkson, & Newhouse, 2004; Trinidad, Newhouse & Clarkson, 2005), Tasmania (Fitzallen 2005) and Queensland (Finger, Proctor, & Watson, 2005). This paper will add to these investigations by describing an alternate and original methodological approach which was trialled in a small-scale pilot study conducted jointly by Queensland Catholic Education Commission (QCEC) and the Centre of Learning Innovation, Queensland University of Technology (QUT) in late 2005. The methodology described is based on tasks which, through a process of profiling, can be seen to be artefacts which embody the internal and external factors enabling and constraining ICT integration.
Resumo:
This paper outlines a process for fleet safety training based on research and management development programmes undertaken at the University of Huddersfield in the UK (www.hud.ac.uk/sas/trans/transnews.htm) and CARRS-Q in Australia (www.carrsq.qut.edu.au/staff/Murray.jsp) over the past 10 years.