271 resultados para Human detection
em Queensland University of Technology - ePrints Archive
Resumo:
In this study, the host-specificity and -sensitivity of human- and bovine-specific adenoviruses (HS-AVs and BS-AVs) were evaluated by testing wastewater/fecal samples from various animal species in Southeast, Queensland, Australia. The overall specificity and sensitivity of the HS-AVs marker were 1.0 and 0.78, respectively. These figures for the BS-AVs were 1.0 and 0.73, respectively. Twenty environmental water samples were colleted during wet conditions and 20 samples were colleted during dry conditions from the Maroochy Coastal River and tested for the presence of fecal indicator bacteria (FIB), host-specific viral markers, zoonotic bacterial and protozoan pathogens using PCR/qPCR. The concentrations of FIB in water samples collected after wet conditions were generally higher compared to dry conditions. HS-AVs was detected in 20% water samples colleted during wet conditions and whereas BS-AVs was detected in both wet (i.e., 10%) and dry (i.e., 10%) conditions. Both, C. jejuni mapA and Salmonella invA genes were detected in 10% and 10% of samples, respectively collected during dry conditions. The concentrations of Salmonella invA ranged between 3.5 × 102 to 4.3 × 102 genomic copies per 500 ml of water G. lamblia β-giardin gene was detected only in one sample (5%) collected during the dry conditions. Weak or significant correlations were observed between FIB with viral markers and zoonotic pathogens. However, during dry conditions, no significant correlations were observed between FIB concentrations with viral markers and zoonotic pathogens. The prevalence of HS-AVs in samples collected from the study river suggests that the quality of water is affected by human fecal pollution and as well as bovine fecal pollution. The results suggest that HS-AVs and BS-AVs detection using PCR could be a useful tool for the identification of human sourced fecal pollution in coastal waters.
Resumo:
The in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) is a method that allows the direct localisation of gene expression. The method utilises the dual buffer mediated activity of the enzyme rTth DNA polymerase enabling both reverse transcription and DNA amplification. Labelled nucleoside triphosphates allow the site of expression to be labelled, rather than the PCR primers themselves, giving a more accurate localisation of transcript expression and decreased background than standard in situ hybridisation (ISH) assays. The MDA-MB-231 human breast carcinoma (HBC) cell line was assayed via the IS-RT-PCR technique, using primers encoding MT-MMP (membrane-type matrix metalloproteinase) and human β-actin. Our results clearly indicate baseline expression of MT-MMP in the relatively invasive MDA-MB-231 cell line at a signal intensity similar to the housekeeping gene β-actin, and results following induction with Concanavalin A (Con A) are consistent with our previous results obtained via Northern blotting.
Resumo:
Telomerase is an extremely important enzyme required for the immortalisation of tumour cells. Because the gene is activated in the vast majority of tumour tissues and remains unused in most somatic cells, it represents a marker with huge diagnostic, prognostic and treatment implications in cancer. This article summarises the basic structure and functions of telomerase and considers its clinical implications in colorectal and other cancers.
Resumo:
A large number of human polyomaviruses have been discovered in the last 7 years. However, little is known about the clinical impact on vulnerable immunosuppressed patient populations. Blood, urine, and respiratory swabs collected from a prospective, longitudinal adult kidney transplant cohort (n = 167) generally pre-operatively, at day 4, months 1, 3, and 6 posttransplant, and at BK viremic episodes within the first year were screened for 12 human polyomaviruses using real-time polymerase chain reaction. Newly discovered polyomaviruses were most commonly detected in the respiratory tract, with persistent shedding seen for up to 6 months posttransplant. Merkel cell polyomavirus was the most common detection, but was not associated with clinical symptoms or subsequent development of skin cancer or other skin abnormalities. In contrast, KI polyomavirus was associated with respiratory disease in a subset of patients. Human polyomavirus 9, Malawi polyomavirus, and human polyomavirus 12 were not detected in any patient samples.
Resumo:
Automatic detection of suspicious activities in CCTV camera feeds is crucial to the success of video surveillance systems. Such a capability can help transform the dumb CCTV cameras into smart surveillance tools for fighting crime and terror. Learning and classification of basic human actions is a precursor to detecting suspicious activities. Most of the current approaches rely on a non-realistic assumption that a complete dataset of normal human actions is available. This paper presents a different approach to deal with the problem of understanding human actions in video when no prior information is available. This is achieved by working with an incomplete dataset of basic actions which are continuously updated. Initially, all video segments are represented by Bags-Of-Words (BOW) method using only Term Frequency-Inverse Document Frequency (TF-IDF) features. Then, a data-stream clustering algorithm is applied for updating the system's knowledge from the incoming video feeds. Finally, all the actions are classified into different sets. Experiments and comparisons are conducted on the well known Weizmann and KTH datasets to show the efficacy of the proposed approach.
Resumo:
Aims: Influenza is commonly spread by infectious aerosols; however, detection of viruses in aerosols is not sensitive enough to confirm the characteristics of virus aerosols. The aim of this study was to develop an assay for respiratory viruses sufficiently sensitive to be used in epidemiological studies. Method: A two-step, nested real-time PCR assay was developed for MS2 bacteriophage, and for influenza A and B, parainfluenza 1 and human respiratory syncytial virus. Outer primer pairs were designed to nest each existing real-time PCR assay. The sensitivities of the nested real-time PCR assays were compared to those of existing real-time PCR assays. Both assays were applied in an aerosol study to compare their detection limits in air samples. Conclusions: The nested real-time PCR assays were found to be several logs more sensitive than the real-time PCR assays, with lower levels of virus detected at lower Ct values. The nested real-time PCR assay successfully detected MS2 in air samples, whereas the real-time assay did not. Significance and Impact of the Study: The sensitive assays for respiratory viruses will permit further research using air samples from naturally generated virus aerosols. This will inform current knowledge regarding the risks associated with the spread of viruses through aerosol transmission.
Resumo:
Surveillance networks are typically monitored by a few people, viewing several monitors displaying the camera feeds. It is then very difficult for a human operator to effectively detect events as they happen. Recently, computer vision research has begun to address ways to automatically process some of this data, to assist human operators. Object tracking, event recognition, crowd analysis and human identification at a distance are being pursued as a means to aid human operators and improve the security of areas such as transport hubs. The task of object tracking is key to the effective use of more advanced technologies. To recognize an event people and objects must be tracked. Tracking also enhances the performance of tasks such as crowd analysis or human identification. Before an object can be tracked, it must be detected. Motion segmentation techniques, widely employed in tracking systems, produce a binary image in which objects can be located. However, these techniques are prone to errors caused by shadows and lighting changes. Detection routines often fail, either due to erroneous motion caused by noise and lighting effects, or due to the detection routines being unable to split occluded regions into their component objects. Particle filters can be used as a self contained tracking system, and make it unnecessary for the task of detection to be carried out separately except for an initial (often manual) detection to initialise the filter. Particle filters use one or more extracted features to evaluate the likelihood of an object existing at a given point each frame. Such systems however do not easily allow for multiple objects to be tracked robustly, and do not explicitly maintain the identity of tracked objects. This dissertation investigates improvements to the performance of object tracking algorithms through improved motion segmentation and the use of a particle filter. A novel hybrid motion segmentation / optical flow algorithm, capable of simultaneously extracting multiple layers of foreground and optical flow in surveillance video frames is proposed. The algorithm is shown to perform well in the presence of adverse lighting conditions, and the optical flow is capable of extracting a moving object. The proposed algorithm is integrated within a tracking system and evaluated using the ETISEO (Evaluation du Traitement et de lInterpretation de Sequences vidEO - Evaluation for video understanding) database, and significant improvement in detection and tracking performance is demonstrated when compared to a baseline system. A Scalable Condensation Filter (SCF), a particle filter designed to work within an existing tracking system, is also developed. The creation and deletion of modes and maintenance of identity is handled by the underlying tracking system; and the tracking system is able to benefit from the improved performance in uncertain conditions arising from occlusion and noise provided by a particle filter. The system is evaluated using the ETISEO database. The dissertation then investigates fusion schemes for multi-spectral tracking systems. Four fusion schemes for combining a thermal and visual colour modality are evaluated using the OTCBVS (Object Tracking and Classification in and Beyond the Visible Spectrum) database. It is shown that a middle fusion scheme yields the best results and demonstrates a significant improvement in performance when compared to a system using either mode individually. Findings from the thesis contribute to improve the performance of semi-automated video processing and therefore improve security in areas under surveillance.
Resumo:
Identifying an individual from surveillance video is a difficult, time consuming and labour intensive process. The proposed system aims to streamline this process by filtering out unwanted scenes and enhancing an individual's face through super-resolution. An automatic face recognition system is then used to identify the subject or present the human operator with likely matches from a database. A person tracker is used to speed up the subject detection and super-resolution process by tracking moving subjects and cropping a region of interest around the subject's face to reduce the number and size of the image frames to be super-resolved respectively. In this paper, experiments have been conducted to demonstrate how the optical flow super-resolution method used improves surveillance imagery for visual inspection as well as automatic face recognition on an Eigenface and Elastic Bunch Graph Matching system. The optical flow based method has also been benchmarked against the ``hallucination'' algorithm, interpolation methods and the original low-resolution images. Results show that both super-resolution algorithms improved recognition rates significantly. Although the hallucination method resulted in slightly higher recognition rates, the optical flow method produced less artifacts and more visually correct images suitable for human consumption.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (as opposed to radar). This paper describes the development and evaluation of a vision-based collision detection algorithm suitable for fixed-wing aerial robotics. The system was evaluated using highly realistic vision data of the moments leading up to a collision. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We make use of the enormous potential of graphic processing units to achieve processing rates of 30Hz (for images of size 1024-by- 768). Currently, integration in the final platform is under way.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.
Resumo:
Non-driving related cognitive load and variations of emotional state may impact a driver’s capability to control a vehicle and introduces driving errors. Availability of reliable cognitive load and emotion detection in drivers would benefit the design of active safety systems and other intelligent in-vehicle interfaces. In this study, speech produced by 68 subjects while driving in urban areas is analyzed. A particular focus is on speech production differences in two secondary cognitive tasks, interactions with a co-driver and calls to automated spoken dialog systems (SDS), and two emotional states during the SDS interactions - neutral/negative. A number of speech parameters are found to vary across the cognitive/emotion classes. Suitability of selected cepstral- and production-based features for automatic cognitive task/emotion classification is investigated. A fusion of GMM/SVM classifiers yields an accuracy of 94.3% in cognitive task and 81.3% in emotion classification.
Resumo:
In this study, the host-sensitivity and -specificity of JCV and BKV polyomaviruses were evaluated by testing wastewater/fecal samples from nine host groups in Southeast Queensland, Australia. The JCV and BKV polyomaviruses were detected in 48 human wastewater samples collected from the primary and secondary effluent suggesting high sensitivity of these viruses in human wastewater. Of the 81 animal wastewater/fecal samples tested, 80 were PCR negative for this marker. Only one sample from pig wastewater was positive. Nonetheless, the overall host-specificity of these viruses to differentiate between human and animal wastewater/fecal samples was 0.99. To our knowledge, this is the first study in Australia that reports the high specificity of JCV and BKV polyomaviruses. To evaluate the field application of these viruses to detect human fecal pollution, 20 environmental samples were collected from a coastal river. Of the 20 samples tested, 15% and 70% samples exceeded the regulatory guidelines for E. coli and enterococci levels for marine waters. In all, 5 (25%) samples were PCR positive for JCV and BKV indicated the presence of human fecal pollution in the studied river. The results suggest that JCV and BKV detection using PCR could be a useful tool for the identification of human sourced fecal pollution in coastal waters.
Resumo:
Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.
Resumo:
The increase of buyer-driven supply chains, outsourcing and other forms of non-traditional employment has resulted in challenges for labour market regulation. One business model which has created substantial regulatory challenges is supply chains. The supply chain model involves retailers purchasing products from brand corporations who then outsource the manufacturing of the work to traders who contract with factories or outworkers who actually manufacture the clothing and textiles. This business model results in time and cost pressures being pushed down the supply chain which has resulted in sweatshops where workers systematically have their labour rights violated. Literally millions of workers work in dangerous workplaces where thousands are killed or permanently disabled every year. This thesis has analysed possible regulatory responses to provide workers a right to safety and health in supply chains which provide products for Australian retailers. This thesis will use a human rights standard to determine whether Australia is discharging its human rights obligations in its approach to combating domestic and foreign labour abuses. It is beyond this thesis to analyse Occupational Health and Safety (OHS) laws in every jurisdiction. Accordingly, this thesis will focus upon Australian domestic laws and laws in one of Australia’s major trading partners, the Peoples’ Republic of China (China). It is hypothesised that Australia is currently breaching its human rights obligations through failing to adequately regulate employees’ safety at work in Australian-based supply chains. To prove this hypothesis, this thesis will adopt a three- phase approach to analysing Australia’s regulatory responses. Phase 1 will identify the standard by which Australia’s regulatory approach to employees’ health and safety in supply chains can be judged. This phase will focus on analysing how workers’ rights to safety as a human right imposes a moral obligation on Australia to take reasonablely practicable steps regulate Australian-based supply chains. This will form a human rights standard against which Australia’s conduct can be judged. Phase 2 focuses upon the current regulatory environment. If existing regulatory vehicles adequately protect the health and safety of employees, then Australia will have discharged its obligations through simply maintaining the status quo. Australia currently regulates OHS through a combination of ‘hard law’ and ‘soft law’ regulatory vehicles. The first part of phase 2 analyses the effectiveness of traditional OHS laws in Australia and in China. The final part of phase 2 then analyses the effectiveness of the major soft law vehicle ‘Corporate Social Responsibility’ (CSR). The fact that employees are working in unsafe working conditions does not mean Australia is breaching its human rights obligations. Australia is only required to take reasonably practicable steps to ensure human rights are realized. Phase 3 identifies four regulatory vehicles to determine whether they would assist Australia in discharging its human rights obligations. Phase 3 then analyses whether Australia could unilaterally introduce supply chain regulation to regulate domestic and extraterritorial supply chains. Phase 3 also analyses three public international law regulatory vehicles. This chapter considers the ability of the United Nations Global Compact, the ILO’s Better Factory Project and a bilateral agreement to improve the detection and enforcement of workers’ right to safety and health.
Resumo:
For the first time in human history, large volumes of spoken audio are being broadcast, made available on the internet, archived, and monitored for surveillance every day. New technologies are urgently required to unlock these vast and powerful stores of information. Spoken Term Detection (STD) systems provide access to speech collections by detecting individual occurrences of specified search terms. The aim of this work is to develop improved STD solutions based on phonetic indexing. In particular, this work aims to develop phonetic STD systems for applications that require open-vocabulary search, fast indexing and search speeds, and accurate term detection. Within this scope, novel contributions are made within two research themes, that is, accommodating phone recognition errors and, secondly, modelling uncertainty with probabilistic scores. A state-of-the-art Dynamic Match Lattice Spotting (DMLS) system is used to address the problem of accommodating phone recognition errors with approximate phone sequence matching. Extensive experimentation on the use of DMLS is carried out and a number of novel enhancements are developed that provide for faster indexing, faster search, and improved accuracy. Firstly, a novel comparison of methods for deriving a phone error cost model is presented to improve STD accuracy, resulting in up to a 33% improvement in the Figure of Merit. A method is also presented for drastically increasing the speed of DMLS search by at least an order of magnitude with no loss in search accuracy. An investigation is then presented of the effects of increasing indexing speed for DMLS, by using simpler modelling during phone decoding, with results highlighting the trade-off between indexing speed, search speed and search accuracy. The Figure of Merit is further improved by up to 25% using a novel proposal to utilise word-level language modelling during DMLS indexing. Analysis shows that this use of language modelling can, however, be unhelpful or even disadvantageous for terms with a very low language model probability. The DMLS approach to STD involves generating an index of phone sequences using phone recognition. An alternative approach to phonetic STD is also investigated that instead indexes probabilistic acoustic scores in the form of a posterior-feature matrix. A state-of-the-art system is described and its use for STD is explored through several experiments on spontaneous conversational telephone speech. A novel technique and framework is proposed for discriminatively training such a system to directly maximise the Figure of Merit. This results in a 13% improvement in the Figure of Merit on held-out data. The framework is also found to be particularly useful for index compression in conjunction with the proposed optimisation technique, providing for a substantial index compression factor in addition to an overall gain in the Figure of Merit. These contributions significantly advance the state-of-the-art in phonetic STD, by improving the utility of such systems in a wide range of applications.