7 resultados para Holstein bovines

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Zoonotic schistosomiasis japonica is a major public health problem in China. Bovines, particularly water buffaloes, are thought to play a major role in the transmission of schistosomiasis to humans in China. Preliminary results (1998–2003) of a praziquantel (PZQ)-based pilot intervention study we undertook provided proof of principle that water buffaloes are major reservoir hosts for S. japonicum in the Poyang Lake region, Jiangxi Province. Methods and Findings Here we present the results of a cluster-randomised intervention trial (2004–2007) undertaken in Hunan and Jiangxi Provinces, with increased power and more general applicability to the lake and marshlands regions of southern China. The trial involved four matched pairs of villages with one village within each pair randomly selected as a control (human PZQ treatment only), leaving the other as the intervention (human and bovine PZQ treatment). A sentinel cohort of people to be monitored for new infections for the duration of the study was selected from each village. Results showed that combined human and bovine chemotherapy with PZQ had a greater effect on human incidence than human PZQ treatment alone. Conclusions The results from this study, supported by previous experimental evidence, confirms that bovines are the major reservoir host of human schistosomiasis in the lake and marshland regions of southern China, and reinforce the rationale for the development and deployment of a transmission blocking anti-S. japonicum vaccine targeting bovines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small animal fracture models have gained increasing interest in fracture healing studies. To achieve standardized and defined study conditions, various variables must be carefully controlled when designing fracture healing experiments in mice or rats. The strain, age and sex of the animals may influence the process of fracture healing. Furthermore, the choice of the fracture fixation technique depends on the questions addressed, whereby intra- and extramedullary implants as well as open and closed surgical approaches may be considered. During the last few years, a variety of different, highly sophisticated implants for fracture fixation in small animals have been developed. Rigid fixation with locking plates or external fixators results in predominantly intramembranous healing in both mice and rats. Locking plates, external fixators, intramedullary screws, the locking nail and the pin-clip device allow different degrees of stability resulting in various amounts of endochondral and intramembranous healing. The use of common pins that do not provide rotational and axial stability during fracture stabilization should be discouraged in the future. Analyses should include at least biomechanical and histological evaluations, even if the focus of the study is directed towards the elucidation of molecular mechanisms of fracture healing using the largely available spectrum of antibodies and gene-targeted animals to study molecular mechanisms of fracture healing. This review discusses distinct requirements for the experimental setups as well as the advantages and pitfalls of the different fixation techniques in rats and mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Despite the increasing clinical problems with metaphyseal fractures, most experimental studies investigate the healing of diaphyseal fractures. Although the mouse would be the preferable species to study the molecular and genetic aspects of metaphyseal fracture healing, a murine model does not exist yet. Using a special locking plate system, we herein introduce a new model, which allows the analysis of metaphyseal bone healing in mice. Methods: In 24 CD-1 mice the distal metaphysis of the femur was osteotomized. After stabilization with the locking plate, bone repair was analyzed radiologically, biomechanically, and histologically after 2 (n = 12) and 5 wk (n = 12). Additionally, the stiffness of the bone-implant construct was tested biomechanically ex vivo. Results: The torsional stiffness of the bone-implant construct was low compared with nonfractured control femora (0.23 ± 0.1 Nmm/°versus 1.78 ± 0.15 Nmm/°, P < 0.05). The cause of failure was a pullout of the distal screw. At 2 wk after stabilization, radiological analysis showed that most bones were partly bridged. At 5 wk, all bones showed radiological union. Accordingly, biomechanical analyses revealed a significantly higher torsional stiffness after 5 wk compared with that after 2 wk. Successful healing was indicated by a torsional stiffness of 90% of the contralateral control femora. Histological analyses showed new woven bone bridging the osteotomy without external callus formation and in absence of any cartilaginous tissue, indicating intramembranous healing. Conclusion: With the model introduced herein we report, for the first time, successful metaphyseal bone repair in mice. The model may be used to obtain deeper insights into the molecular mechanisms of metaphyseal fracture healing. © 2012 Elsevier Inc. All rights reserved.