80 resultados para Head, Isabella.
em Queensland University of Technology - ePrints Archive
Resumo:
Clinical Nutrition for Oncology Patients provides clinicians with the information they need to help cancer survivors and patients make informed choices about their nutrition and improve their short-term and long-term health. This comprehensive resource outlines nutritional management recommendations for care prior to, during, and after treatment and addresses specific nutritional needs and complementary therapies that may be of help to a patient. This book is written by a variety of clinicians who not only care for cancer survivors and their caregivers but are also experts in the field of nutritional oncology.
Resumo:
The Guide contains the distilled findings from a major, two-year research project to explore those factors considered by industry practitioners to be critical to the successful adoption of ICT, both within their firms and between their firms and their trading partners. In the context of this project Critical Success Factors (CSFs) have been defined as, “Those things that absolutely, positively must be attended to in order to maximise the likelihood of a successful outcome for the stakeholder, defined in the stakeholder’s terms.” The guide includes: o Perceived benefits of ICT use across the head contractors’ sector o Types and levels of ICT used across the sector o Self-assessment tool o CSFs for medium- and high-level ICT users, including o Best Practice Profiles o Action Statements The material contained in this Guide has been generated following a number of principles: o For a given situation there is not a single ‘right answer’, but a number of solutions that have to be evaluated using a range of relevant factors. o Since there are as many solutions as there are ‘solvers’, factors for evaluation will ‘emerge’ from collective wisdom.
Resumo:
Investigated the psychometric properties of the original and alternate sets of the Trail Making Test (TMT) and the Controlled Oral Word Association Test (COWAT; A. L. Benton and D. Hamsher, 1978) in 50 orthopedic and 15 closed head injured (1 yr after trauma) patients (aged 15–59 yrs). Although the alternate forms of both measures proved to be stable and consistent with each other in both groups, only the parallel sets of TMT reliably discriminated the clinical group from controls. Practice effects in the head injured were significant only for Trail B of TMT. Factor analysis of the control group's results identified Verbal Knowledge as a major contributor to performance on COWAT, whereas TMT was more dependent on Rapid Visual Search and Visuomotor Sequencing.
Resumo:
Purpose: To investigate whether wearing different presbyopic vision corrections alters the pattern of eye and head movements when viewing and responding to driving-related traffic scenes. Methods: Participants included 20 presbyopes (mean age: 56.1 ± 5.7 years) who had no experience of wearing presbyopic vision corrections, apart from single vision (SV) reading spectacles. Each participant wore five different vision corrections: distance SV lenses, progressive addition spectacle lenses (PAL), bifocal spectacle lenses (BIF), monovision (MV) and multifocal contact lenses (MTF CL). For each visual condition, participants were required to view videotape recordings of traffic scenes, track a reference vehicle, and identify a series of peripherally presented targets. Digital numerical display panels were also included as near visual stimuli (simulating the visual displays of a vehicle speedometer and radio). Eye and head movements were measured, and the accuracy of target recognition was also recorded. Results: The path length of eye movements while viewing and responding to driving-related traffic scenes was significantly longer when wearing BIF and PAL than MV and MTF CL (both p ≤ 0.013). The path length of head movements was greater with SV, BIF, and PAL than MV and MTF CL (all p < 0.001). Target recognition and brake response times were not significantly affected by vision correction, whereas target recognition was less accurate when the near stimulus was located at eccentricities inferiorly and to the left, rather than directly below the primary position of gaze (p = 0.008), regardless of vision correction. Conclusions: Different presbyopic vision corrections alter eye and head movement patterns. The longer path length of eye and head movements and greater number of saccades associated with the spectacle presbyopic corrections may affect some aspects of driving performance.
Resumo:
We aimed to investigate the naturally occurring horizontal plane movements of a head stabilized in a standard ophthalmic headrest and to analyze their magnitude, velocity, spectral characteristics, and correlation to the cardio pulmonary system. Two custom-made air-coupled highly accurate (±2 μm)ultrasound transducers were used to measure the displacements of the head in different horizontal directions with a sampling frequency of 100 Hz. Synchronously to the head movements, an electrocardiogram (ECG) signal was recorded. Three healthy subjects participated in the study. Frequency analysis of the recorded head movements and their velocities was carried out, and functions of coherence between the two displacements and the ECG signal were calculated. Frequency of respiration and the heartbeat were clearly visible in all recorded head movements. The amplitude of head displacements was typically in the range of ±100 μm. The first harmonic of the heartbeat (in the range of 2–3 Hz), rather than its principal frequency, was found to be the dominant frequency of both head movements and their velocities. Coherence analysis showed high interdependence between the considered signals for frequencies of up to 20 Hz. These findings may contribute to the design of better ophthalmic headrests and should help other studies in the decision making of whether to use a heavy headrest or a bite bar.
Resumo:
Purpose: To investigate whether wearing different presbyopic refractive corrections alters the pattern of eye and head movements when searching for dynamic targets in driving-related traffic scenes. Methods: Eye and head movements of 20 presbyopes (mean age = 56.2 ± 5.7 years), who had no experience of wearing presbyopic corrections or were unadapted wearers were recorded using the faceLABTM eye and head tracker, while wearing five different corrections: single vision lenses (SV), progressive addition lenses (PALs), bifocal spectacles (BIF), monovision and multifocal contact lenses (MTF CLs) in random order (within-subjects comparison). Recorded traffic scenes of suburban roads and expressways with edited targets were viewed as dynamic stimuli. Results: The magnitude of eye and head movements was significantly greater for SV, BIF and PALs than monovision and MTF CLs (p < 0.001). In addition, BIF wear led to more eye movements than PAL wear (p = 0.017), while PAL wear resulted in greater head movements than SV wear (p = 0.018). The ratio of eye to head movement was smaller for PALs than all other groups (p < 0.001). The number of saccades made to fixate a target was significantly higher for BIF and PALs than monovision or MTF CLs (p < 0.05). Conclusions: Different presbyopic corrections can alter eye and head movement patterns. Wearing spectacles such as BIF and PALs produced relatively greater eye and head movements and saccades when viewing dynamic targets. The impact of these changes in eye and head movement patterns may have implications for driving performance under real world driving conditions.
Resumo:
Purpose: To compare the eye and head movements and lane-keeping of drivers with hemianopia and quadrantanopia with that of age-matched controls when driving under real world conditions. Methods: Participants included 22 hemianopes and 8 quadrantanopes (M age 53 yrs) and 30 persons with normal visual fields (M age 52 yrs) who were ≥ 6 months from the brain injury date and either a current driver or aiming to resume driving. All participants drove an instrumented dual-brake vehicle along a 14-mile route in traffic that included non-interstate city driving and interstate driving. Driving performance was scored using a standardised assessment system by two “backseat” raters and the Vigil Vanguard system which provides objective measures of speed, braking and acceleration, cornering, and video-based footage from which eye and head movements and lane-keeping can be derived. Results: As compared to drivers with normal visual fields, drivers with hemianopia or quadrantanopia on average were significantly more likely to drive slower, to exhibit less excessive cornering forces or acceleration, and to execute more shoulder movements off the seat. Those hemianopic and quadrantanopic drivers rated as safe to drive by the backseat evaluator made significantly more excursive eye movements, exhibited more stable lane positioning, less sudden braking events and drove at higher speeds than those rated as unsafe, while there was no difference between safe and unsafe drivers in head movements. Conclusions: Persons with hemianopic and quadrantanopic field defects rated as safe to drive have different driving characteristics compared to those rated as unsafe when assessed using objective measures of driving performance.
Resumo:
Purpose: To investigate whether wearing different presbyopic vision corrections alters the pattern of eye and head movements when viewing dynamic driving-related traffic scenes. Methods: Participants included 20 presbyopes (mean age: 56±5.7 years) who had no experience of wearing presbyopic vision corrections (i.e. all were single vision wearers). Eye and head movements were recorded while wearing five different vision corrections: single vision lenses (SV), progressive addition spectacle lenses (PALs), bifocal spectacle lenses (BIF), monovision (MV) and multifocal contact lenses (MTF CL) in random order. Videotape recordings of traffic scenes of suburban roads and expressways (with edited targets) were presented as dynamic driving-related stimuli and digital numeric display panels included as near visual stimuli (simulating speedometer and radio). Eye and head movements were recorded using the faceLAB™ system and the accuracy of target identification was also recorded. Results: The magnitude of eye movements while viewing the driving-related traffic scenes was greater when wearing BIF and PALs than MV and MTF CL (p≤0.013). The magnitude of head movements was greater when wearing SV, BIF and PALs than MV and MTF CL (p<0.0001) and the number of saccades was significantly higher for BIF and PALs than MV (p≤0.043). Target recognition accuracy was poorer for all vision corrections when the near stimulus was located at eccentricities inferiorly and to the left, rather than directly below the primary position of gaze (p=0.008), and PALs gave better performance than MTF CL (p=0.043). Conclusions: Different presbyopic vision corrections alter eye and head movement patterns. In particular, the larger magnitude of eye and head movements and greater number of saccades associated with the spectacle presbyopic corrections, may impact on driving performance.
Resumo:
The Velocity Sourced Series Elastic Actuator has been proposed as a method for providing safe force or torque based actuation for robots without compromising the actuator performance. In this paper we assess the safety of Velocity Sourced Series Elastic Actuators by measuring the Head Injury Criterion scores for collisions with a model head. The study makes a comparative analysis against stiff, high impedance actuation using the same motor without the series elastic component, showing that the series elastic component brings about a massive reduction in the chance of head injury. The benefits of a collision detection and safe reaction system are shown to be limited to collisions at low speeds, providing greater interaction comfort but not necessarily contributing to safety from injury.
Resumo:
Calibration of movement tracking systems is a difficult problem faced by both animals and robots. The ability to continuously calibrate changing systems is essential for animals as they grow or are injured, and highly desirable for robot control or mapping systems due to the possibility of component wear, modification, damage and their deployment on varied robotic platforms. In this paper we use inspiration from the animal head direction tracking system to implement a self-calibrating, neurally-based robot orientation tracking system. Using real robot data we demonstrate how the system can remove tracking drift and learn to consistently track rotation over a large range of velocities. The neural tracking system provides the first steps towards a fully neural SLAM system with improved practical applicability through selftuning and adaptation.