322 resultados para Harvest machinery production

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents work in progress of EatChaFood – a prototype app designed to increase user knowledge of the currently available domestic supply and location of food, with a view to reducing expired household food waste. In order to reap the benefits that EatChaFood can provide we explore ways to overcome manual data entry as a barrier to use. Our user study has to recognise the limitations of the prototype app, and conduct an evaluation of the interaction design built into the app to promote behaviour change. Innovations in the near future such as the automatic scanning of barcodes on food items or photo-recognition will close the gap between perceived prototype usability and usefulness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we describe a novel protein production platform that provides both activation and amplification of transgene expression in planta. The In Plant Activation (INPACT) system is based on the replication machinery of tobacco yellow dwarf mastrevirus (TYDV) and is essentially transient gene expression from a stably transformed plant, thus combining the advantages of both means of expression. The INPACT cassette is uniquely arranged such that the gene of interest is split and only reconstituted in the presence of the TYDV-encoded Rep/RepA proteins. Rep/RepA expression is placed under the control of the AlcA:AlcR gene switch, which is responsive to trace levels of ethanol. Transgenic tobacco (Nicotiana tabacum cv Samsun) plants containing an INPACT cassette encoding the b-glucuronidase (GUS) reporter had negligible background expression but accumulated very high GUS levels (up to 10% total soluble protein) throughout the plant, within 3 d of a 1% ethanol application. The GUS reporter was replaced with a gene encoding a lethal ribonuclease, barnase, demonstrating that the INPACT system provides exquisite control of transgene expression and can be adapted to potentially toxic or inhibitory compounds. The INPACT gene expression platform is scalable, not host-limited, and has been used to express both a therapeutic and an industrial protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser. Elevated emissions of nitrous oxide (N2O) can be expected as a consequence. In order to mitigate N2O emissions from fertilised agricultural fields, the use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted. However, no data is currently available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment was conducted to investigate the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N2O emissions and yield from broccoli production in sub-tropical Australia. Soil N2O fluxes were monitored continuously (3 h sampling frequency) with fully automated, pneumatically operated measuring chambers linked to a sampling control system and a gas chromatograph. Cumulative N2O emissions over the 5 month observation period amounted to 298 g-N/ha, 324 g-N/ha, 411 g-N/ha and 463 g-N/ha in the conventional fertiliser (CONV), the DMPP treatment (DMPP), the DMMP treatment with a 10% reduced fertiliser rate (DMPP-red) and the zero fertiliser (0N), respectively. The temporal variation of N2O fluxes showed only low emissions over the broccoli cropping phase, but significantly elevated emissions were observed in all treatments following broccoli residues being incorporated into the soil. Overall 70–90% of the total emissions occurred in this 5 weeks fallow phase. There was a significant inhibition effect of DMPP on N2O emissions and soil mineral N content over the broccoli cropping phase where the application of DMPP reduced N2O emissions by 75% compared to the standard practice. However, there was no statistical difference between the treatments during the fallow phase or when the whole season was considered. This study shows that DMPP has the potential to reduce N2O emissions from intensive vegetable systems, but also highlights the importance of post-harvest emissions from incorporated vegetable residues. N2O mitigation strategies in vegetable systems need to target these post-harvest emissions and a better evaluation of the effect of nitrification inhibitors over the fallow phase is needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As urbanisation of the global population has increased above 50%, growing food in urban spaces increases in importance, as it can contribute to food security, reduce food miles, and improve people’s physical and mental health. Approaching the task of growing food in urban environments is a mixture of residential growers and groups. Permablitz Brisbane is an event-centric grassroots community that organises daylong ‘working bee’ events, drawing on permaculture design principles in the planning and design process. Permablitz Brisbane provides a useful contrast from other location-centric forms of urban agriculture communities (such as city farms or community gardens), as their aim is to help encourage urban residents to grow their own food. We present findings and design implications from a qualitative study with members of this group, using ethnographic methods to engage with and understand how this group operates. Our findings describe four themes that include opportunities, difficulties, and considerations for the creation of interventions by Human-Computer Interaction (HCI) designers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clear-fell harvest of forest concerns many wildlife biologists because of loss of vital resources such as roosts or nests, and effects on population viability. However, actual impact has not been quantified. Using New Zealand long-tailed bats (Chalinolobus tuberculatus) as a model species we investigated impacts of clear-fell logging on bats in plantation forest. C. tuberculatus roost within the oldest stands in plantation forest so it was likely roost availability would decrease as harvest operations occurred. We predicted that post-harvest: (1) roosting range sizes would be smaller, (2) fewer roosts would be used, and (3) colony size would be smaller. We captured and radiotracked C. tuberculatus to day-roosts in Kinleith Forest, an exotic plantation forest, over three southern hemisphere summers (Season 1 October 2006–March 2007; Season 2 November 2007–March 2008; and Season 3 November 2008–March 2009). Individual roosting ranges (100% MCPs) post harvest were smaller than those in areas that had not been harvested, and declined in area during the 3 years. Following harvest, bats used fewer roosts than those in areas that had not been harvested. Over 3 years 20.7% of known roosts were lost: 14.5% due to forestry operations and 6.2% due to natural tree fall. Median colony size was 4.0 bats (IQR = 2.0–8.0) and declined during the study, probably because of locally high levels of roost loss. Post harvest colonies were smaller than colonies in areas that had not been harvested. Together, these results suggest the impact of clear-fell harvest on long-tailed bat populations is negative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted recently as an effective method to reduce nitrous oxide (N2O) emissions from fertilised agricultural fields, whilst increasing yield and nitrogen use efficiency. Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser and consequently elevated emissions of nitrous oxide (N2O) can be expected. However, to date only limited data is available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment investigated the effect of the nitrification inhibitors (DMPP & 3MP+TZ) on N2O emissions and yield from a typical vegetable production system in sub-tropical Australia. Soil N2O fluxes were monitored continuously over an entire year with a fully automated system. Measurements were taken from three subplots for each treatment within a randomized complete blocks design. There was a significant inhibition effect of DMPP and 3MP+TZ on N2O emissions and soil mineral N content directly following the application of the fertiliser over the vegetable cropping phase. However this mitigation was offset by elevated N2O emissions from the inhibitor treatments over the post-harvest fallow period. Cumulative annual N2O emissions amounted to 1.22 kg-N/ha, 1.16 kg-N/ha, 1.50 kg-N/ha and 0.86 kg-N/ha in the conventional fertiliser (CONV), the DMPP treatment, the 3MP+TZ treatment and the zero fertiliser (0N) respectively. Corresponding fertiliser induced emission factors (EFs) were low with only 0.09 - 0.20% of the total applied fertiliser lost as N2O. There was no significant effect of the nitrification inhibitors on yield compared to the CONV treatment for the three vegetable crops (green beans, broccoli, lettuce) grown over the experimental period. This study highlights that N2O emissions from such vegetable cropping system are primarily controlled by post-harvest emissions following the incorporation of vegetable crop residues into the soil. It also shows that the use of nitrification inhibitors can lead to elevated N2O emissions by storing N in the soil profile that is available to soil microbes during the decomposition of the vegetable residues over the post-harvest phase. Hence the use of nitrification inhibitors in vegetable systems has to be treated carefully and fertiliser rates need to be adjusted to avoid excess soil nitrogen during the postharvest phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

- Description of the work Harvest: A biotextile future consists of four bags constructed from kombucha, each utilizing a different approach to this material. The kombucha material is a byproduct of the fermented green tea, kombucha, and is comprised of a symbiotic culture of bacteria and yeast (SCOBY) that forms a fast growing curd or pellicle on the surface of the tea. This pellicle is harvested, washed, and dried to make a material with characteristics that can range between leather and paper in handle. The pellicle is one hundred per cent cellulose, with the individual fibres growing together to produce a durable and strong non-woven textile. Techniques explored with the dry kombucha material include folding, stitching, and laser etching. The final bags were designed with reference to classic tropes of fashion accessories: the briefcase, the clutch, the valise and the handbag. The valise included three jars in which the kombucha was displayed as ‘growing’ within the bag. - Research Background This work sits within an emerging field of practice in which fashion design intersects with biotechnology. Designers such as Suzanne Lee have explored constructing garments from bacteria byproducts, and bio-artists Oron Catts and Ionat Zurr have created ‘victimless leather’ grown from cultured cells. Although still speculative, these collaborations between science and design point to new material applications for fashion. Our work contributes to this area through testing both the growing of the textile and its application to construct durable fashion artefacts. - Research Contribution Harvest: A biotextile future makes two contributions to new knowledge in the area of design for sustainability within fashion. The first contribution lies in extending the technical experimentation required to grow and manipulate the textile. For the briefcase, the pattern shape was ‘grown’ into the required shape, using a shaped container. Other techniques used in the bags included weaving, folding and laser etching the material to extend its functional and decorative properties. Experimentation with the growing and drying of the material led to the production of a wide range of physical properties, in which the material was more brittle or flexible as required. The second research contribution lies in the proposal of this material for use in durable fashion accessories. The material is still speculative and small-scale in production, however the four bags illustrate the potential for kombucha as a biodegradable alternative to leather or synthetic materials. - Research Significance This interplay of science and design research opens up an exploration for a speculative future of sustainable, biodegradable textiles using live bacteria to enable ‘homegrown’ vegan apparel. The collaborators on this project include scientist Peter Musk and fashion designers Alice Payne and Dean Brough. Harvest: A biotextile future was exhibited at the State Library of Queensland’s Asia Pacific Design Library, 1-5 November 2015, as part of The International Association of Societies of Design Research’s (IASDR) biannual design conference. The work was chosen for display by a panel of experts, based on the criteria of design innovation and contribution to new knowledge in design.