88 resultados para Grains
em Queensland University of Technology - ePrints Archive
Resumo:
BACKGROUND: The presence of insects in stored grains is a significant problem for grain farmers, bulk grain handlers and distributors worldwide. Inspections of bulk grain commodities is essential to detect pests and therefore to reduce the risk of their presence in exported goods. It has been well documented that insect pests cluster in response to factors such as microclimatic conditions within bulk grain. Statistical sampling methodologies for grains, however, have typically considered pests and pathogens to be homogeneously distributed throughout grain commodities. In this paper we demonstrate a sampling methodology that accounts for the heterogeneous distribution of insects in bulk grains. RESULTS: We show that failure to account for the heterogeneous distribution of pests may lead to overestimates of the capacity for a sampling program to detect insects in bulk grains. Our results indicate the importance of the proportion of grain that is infested in addition to the density of pests within the infested grain. We also demonstrate that the probability of detecting pests in bulk grains increases as the number of sub-samples increases, even when the total volume or mass of grain sampled remains constant. CONCLUSION: This study demonstrates the importance of considering an appropriate biological model when developing sampling methodologies for insect pests. Accounting for a heterogeneous distribution of pests leads to a considerable improvement in the detection of pests over traditional sampling models.
Resumo:
Effective, statistically robust sampling and surveillance strategies form an integral component of large agricultural industries such as the grains industry. Intensive in-storage sampling is essential for pest detection, Integrated Pest Management (IPM), to determine grain quality and to satisfy importing nation’s biosecurity concerns, while surveillance over broad geographic regions ensures that biosecurity risks can be excluded, monitored, eradicated or contained within an area. In the grains industry, a number of qualitative and quantitative methodologies for surveillance and in-storage sampling have been considered. Primarily, research has focussed on developing statistical methodologies for in storage sampling strategies concentrating on detection of pest insects within a grain bulk, however, the need for effective and statistically defensible surveillance strategies has also been recognised. Interestingly, although surveillance and in storage sampling have typically been considered independently, many techniques and concepts are common between the two fields of research. This review aims to consider the development of statistically based in storage sampling and surveillance strategies and to identify methods that may be useful for both surveillance and in storage sampling. We discuss the utility of new quantitative and qualitative approaches, such as Bayesian statistics, fault trees and more traditional probabilistic methods and show how these methods may be used in both surveillance and in storage sampling systems.
Resumo:
YBCO wires which consist of well oriented plate-like fine grains are fabricated using a moving furnace to achieve higher mechanical strength. Melt-texturing experiments have been undertaken on YBCO wires with two different compositions: YBa1.5Cu2.9O7-x, and YBa1.8Cu3.0O7-x. Wires are extruded from a mixture of precursor powders (formed by a coprecipitation process) then textured by firing in a moving furnace. Size of secondary phases such as barium cuprate and copper oxide, and overall composition of the sample affect the orientation of the fine grains. At zero magnetic field, the YBa1.5Cu2.9O7-x wire shows the highest critical current density of 1,450 Acm-2 and 8,770 Acm-2 at 77K and 4.2K, respectively. At 1 T, critical current densities of 30 Acm-2 and 200 Acm-2, respectively, are obtained at 77K and 4.2K. Magnetisation curves are also obtained for one sample to evaluate critical current density using the Bean model. Analysis of the microstructure indicates that the starting composition of the green body significantly affects the achievement of grain alignment via melt-texturing processes.
Resumo:
A method for producing metal oxide particles having nano-sized grains is disclosed. A solution of metal cations is mixed with surfactant under conditions such that surfactant micelles are formed. This mixture is then heated to form the metal oxide particles; this heating step removing the surfactant, forming the metal oxide and creating the pore structure of the particles. The pore structures are disordered. This method is particularly advantageous for production of complex (multi-component) metal oxides in which the different atomic species are homogeneously dispersed.
Resumo:
A complex low-pressure argon discharge plasma containing dust grains is studied using a Boltzmann equation for the electrons and fluid equations for the ions. Local effects, such as the spatial distribution of the dust density and external electric field, are included, and their effect on the electron energy distribution, the electron and ion number densities, the electron temperature, and the dust charge are investigated. It is found that dust particles can strongly affect the plasma parameters by modifying the electron energy distribution, the electron temperature, the creation and loss of plasma particles, as well as the spatial distributions of the electrons and ions. In particular, for sufficiently high grain density and/or size, in a low-pressure argon glow discharge, the Druyvesteyn-like electron distribution in pristine plasmas can become nearly Maxwellian. Electron collection by the dust grains is the main cause for the change in the electron distribution function.
Resumo:
The timing of widespread continental emergence is generally considered to have had a dramatic effect on the hydrological cycle, atmospheric conditions, and climate. New secondary ion mass spectrometry (SIMS) oxygen and laser-ablation–multicollector–inductively coupled plasma–mass spectrometry (LA-MC-ICP-MS) Lu-Hf isotopic results from dated zircon grains in the granitic Neoarchean Rum Jungle Complex provide a minimum time constraint on the emergence of continental crust above sea level for the North Australian craton. A 2535 ± 7 Ma monzogranite is characterized by magmatic zircon with slightly elevated δ18O (6.0‰–7.5‰ relative to Vienna standard mean ocean water [VSMOW]), consistent with some contribution to the magma from reworked supracrustal material. A supracrustal contribution to magma genesis is supported by the presence of metasedimentary rock enclaves, a large population of inherited zircon grains, and subchondritic zircon Hf (εHf = −6.6 to −4.1). A separate, distinct crustal source to the same magma is indicated by inherited zircon grains that are dominated by low δ18O values (2.5‰–4.8‰, n = 9 of 15) across a range of ages (3536–2598 Ma; εHf = −18.2 to +0.4). The low δ18O grains may be the product of one of two processes: (1) grain-scale diffusion of oxygen in zircon by exchange with a low δ18O magma or (2) several episodes of magmatic reworking of a Mesoarchean or older low δ18O source. Both scenarios require shallow crustal magmatism in emergent crust, to allow interaction with rocks altered by hydrothermal meteoric water in order to generate the low δ18O zircon. In the first scenario, assimilation of these altered rocks during Neoarchean magmatism generated low δ18O magma with which residual detrital zircons were able to exchange oxygen, while preserving their U-Pb systematics. In the second scenario, wholesale melting of the altered rocks occurred in several distinct events through the Mesoarchean, generating low δ18O magma from which zircon crystallized. Ultimately, in either scenario, the low δ18O zircons were entrained as inherited grains in a Neoarchean granite. The data suggest operation of a modern hydrological cycle by the Neoarchean and add to evidence for the increased emergence of continents by this time
Resumo:
Microstructural (fabric, forces and composition) changes due to hydrocarbon contamination in a clay soil were studied using Scanning Electron Microscope (micro-fabric analysis), Atomic Force Microscope (forces measurement) and sedimentation bench test (particle size measurements). The non-polluted and polluted glacial till from north-eastern Poland (area of a fuel terminal) were used for the study. Electrostatic repelling forces for the polluted sample were much lower than for the non-polluted sample. In comparison to non-polluted sample, the polluted sample exhibited lower electric charge, attractive forces on approach and strong adhesion on retrieve. The results of the sedimentation tests indicate that clay particles form larger aggregates and settle out of the suspension rapidly in diesel oil. In non-polluted soil, the fabric is strongly aggregated – densely packed, dominate the face-to-face and edge-to-edge types of contacts, clay film tightly adheres to the surface of larger grains and interparticle pores are more common. In polluted soil, the clay matrix is less aggregated – loosely packed, dominate the edge-to-face types of contacts and inter-micro-aggregate pores are more frequent. Substantial differences were observed in the morphometric and geometrical parameters of pore space. The polluted soil micro-fabric proved to be more isotropic and less oriented than in non-polluted soil. The polluted soil, in which electrostatic forces were suppressed by hydrocarbon interaction, displays more open porosity and larger voids than non-polluted soil, which is characterized by occurrence of the strong electrostatic interaction between clay particles.
Resumo:
Crystal growth of bulk CdTe in short-duration microgravity is performed by the unidirectional cooling method. The largest growth grains in microgravity samples are 4X2mm. The cooling profiles indicate undercooling melts in microgravity. Cooling melt samples in microgravity generate strong gradient of temperature due to stop thermal convections. Temperature distribution in the melt is calculated by the one-dimensional equation of heat conduction, and about 100 K-undercooling is considered to occur at the cooling surface.
Resumo:
Experiments were undertaken to study effect of initial conditions on the expansion ratio of two grains in a laboratory scale, single speed, single screw extruder at Naresuan University, Thailand. Jasmine rice and Mung bean were used as the material. Three different initial moisture contents were adjusted for the grains and classified them into three groups according to particle sizes. Mesh sizes used are 12 and 14. Expansion ratio was measured at a constant barrel temperature of 190oC. Response surface methodology was used to obtain optimum conditions between moisture content and particle size of the materials concerned.
Resumo:
Soil organic carbon (C) sequestration rates based on the Intergovernmental Panel for Climate Change (IPCC) methodology were combined with local economic data to simulate the economic potential for C sequestration in response to conservation tillage in the six agro-ecological zones within the Southern Region of the Australian grains industry. The net C sequestration rate over 20 years for the Southern Region (which includes discounting for associated greenhouse gases) is estimated to be 3.6 or 6.3 Mg C/ha after converting to either minimum or no-tillage practices, respectively, with no-till practices estimated to return 75% more carbon on average than minimum tillage. The highest net gains in C per ha are realised when converting from conventional to no-tillage practices in the high-activity clay soils of the High Rainfall and Wimmera agro-ecological zones. On the basis of total area available for change, the Slopes agro-ecological zone offers the highest net returns, potentially sequestering an additional 7.1 Mt C under no-tillage scenario over 20 years. The economic analysis was summarised as C supply curves for each of the 6 zones expressing the total additional C accumulated over 20 years for a price per t C sequestered ranging from zero to AU$200. For a price of $50/Mg C, a total of 427 000 Mg C would be sequestered over 20 years across the Southern Region, <5% of the simulated C sequestration potential of 9.1 Mt for the region. The Wimmera and Mid-North offer the largest gains in C under minimum tillage over 20 years of all zones for all C prices. For the no-tillage scenario, for a price of $50/Mg C, 1.74 Mt C would be sequestered over 20 years across the Southern Region, <10% of the simulated C sequestration potential of 18.6 Mt for the region over 20 years. The Slopes agro-ecological zone offers the best return in C over 20 years under no-tillage for all C prices. The Mallee offers the least return for both minimum and no-tillage scenarios. At a price of $200/Mg C, the transition from conventional tillage to minimum or no-tillage practices will only realise 19% and 33%, respectively, of the total biogeochemical sequestration potential of crop and pasture systems of the Southern Region over a 20-year period.
Resumo:
Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.
Resumo:
Insect monitoring and sampling programmes are used in the stored grains industry for the detection and estimation of insect pests. At the low pest densities dictated by economic and commercial requirements, the accuracy of both detection and abundance estimates can be influenced by variations in the spatial structure of pest populations over short distances. Geostatistical analysis of Rhyzopertha dominica populations in 2 dimensions showed that, in both the horizontal and vertical directions and at all temperatures examined, insect numbers were positively correlated over short (0-5cm) distances, and negatively correlated over longer (≥10cm) distances. Analysis in 3 dimensions showed a similar pattern, with positive correlations over short distances and negative correlations at longer distances. At 35°C, insects were located significantly further from the grain surface than at 25 and 30°C. Dispersion metrics showed statistically significant aggregation in all cases. This is the first research using small sample units, high sampling intensities, and a range of temperatures, to show spatial structuring of R. dominica populations over short distances. This research will have significant implications for sampling in the stored grains industry.
Resumo:
Sampling of the El Chichón stratospheric cloud in early May and in late July, 1982, showed that a significant proportion of the cloud consisted of solid particles between 2 μm and 40 μm size. In addition, many particles may have been part of larger aggregates or clusters that ranged in size from < 10 μm to > 50 μm. The majority of individual grains were angular aluminosilicate glass shards with various amounts of smaller, adhering particles. Surface features on individual grains include sulfuric acid droplets and larger (0.5 μm to 1 μm) sulfate gel droplets with various amounts of Na, Mg, Ca and Fe. The sulfate gels probably formed by the interaction of sulfur-rich gases and solid particles within the cloud soon after eruption. Ca-sulfate laths may have formed by condensation within the plume during eruption, or alternatively, at a later stage by the reaction of sulfuric acid aerosols with ash fragments within the stratospheric cloud. A Wilson-Huang formulation for the settling rate of individual particles qualitatively agrees with the observed particle-size distribution for a period at least four months after injection of material into the stratosphere. This result emphasizes the importance of particle shape in controlling the settling rate of volcanic ash from the stratosphere.
Resumo:
Samples of a large (~60 µm) chondritic porous (CP) aggregate collected from the stratosphere have been analysed in detail by analytical electron microscopy (AEM). Previous studies of CP aggregates have shown that they are extraterrestrial in origin1–3 and may be related to cometary debris4. CP aggregates are dissimilar to C1 and C2 carbonaceous chondrite matrices and many have not been significantly altered by thermal or radiation processes since their assembly5. We report here a high concentration of Bi2O3 grains within the large CP aggregate designated W7029* A (~60 µm) and suggest they formed by rapid heating (~300 °C) of elemental Bi grains within the aggregate during atmospheric entry. We examine the possibilities for terrestrial Bi contamination of CP aggregate W7029* A but judge them unlikely. Enrichment of elemental Bi within components of extraterrestrial materials is consistent with a nebula condensation model6 and implies that Bi within CP aggregate W7029* A may have formed at a late stage of the condensation process.
Resumo:
An important component of current models for interstellar and circumstellar evolution is the infrared (IR)spectral data collected from stellar outflows around oxygen-rich stars and from the general interstellar medium [1]. IR spectra from these celestial bodies are usually interpreted as showing the general properties of sub-micron sized silicate grains [2]. Two major features at 10 and 20 microns are reasonably attributed to amorphous olivine or pyroxene (e.g. Mg2Si04 or MgSi03) on the basis of comparisons with natural standards and vapor condensed silicates [3-6]. In an attempt to define crystallisation rates for spectrally amorphous condensates, Nuth and Donn [5] annealed experimentally produced amorphous magnesium silicate smokes at 1000K. On analysing these smokes at various annealing times, Nuth and Donn [5] showed that changes in crystallinity measured by bulk X-ray diffraction occured at longer annealing times (days) than changes measured by IR spectra (a few hours). To better define the onset of crystallinity in these magnesium silicates, we have examined each annealed product using a JEOL 1OOCX analytical electron microscope (AEM). In addition, the development of chemical diversity with annealing has been monitored using energy dispersive spectroscopy of individual grains from areas <20nm in diameter. Furthermore, the crystallisation kinetics of these smokes under ambient, room temperature conditions have been examined using bulk and fourier transform infrared (FTIR)spectra.