112 resultados para Firing (Ceramics)

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combination of micro-Raman spectroscopy, micro-infrared spectroscopy and SEM–EDX was employed to characterize decorative pigments on Classic Maya ceramics from Copán, Honduras. Variation in red paint mixtures was correlated with changing ceramic types and improvements in process and firing techniques. We have confirmed the use of specular hematite on Coner ceramics by the difference in intensities of Raman bands. Different compositions of brown paint were correlated with imported and local wares. The carbon-iron composition of the ceramic type, Surlo Brown, was confirmed. By combining micro-Raman analysis with micro-ATR infrared and SEM–EDX, we have achieved a more comprehensive characterization of the paint mixtures. These spectroscopic techniques can be used non-destructively on raw samples as a rapid confirmation of ceramic type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the control of a HVDC link, fed from an AC source through a controlled rectifier and feeding an AC line through a controlled inverter. The overall objective is to maintain maximum possible link voltage at the inverter while regulating the link current. In this paper the practical feedback design issues are investigated with a view of obtaining simple, robust designs that are easy to evaluate for safety and operability. The investigations are applicable to back-to-back links used for frequency decoupling and to long DC lines. The design issues discussed include: (i) a review of overall system dynamics to establish the time scale of different feedback loops and to highlight feedback design issues; (ii) the concept of using the inverter firing angle control to regulate link current when the rectifier firing angle controller saturates; and (iii) the design issues for the individual controllers including robust design for varying line conditions and the trade-off between controller complexity and the reduction of nonlinearity and disturbance effects

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Divalent cobalt ions (Co2+) have been shown to possess the capacity to induce angiogenesis by activating hypoxia inducible factor-1α (HIF-1α) and subsequently inducing the production of vascular endothelial growth factor (VEGF). However, there are few reports about Co-containing biomaterials for inducing in vitro angiogenesis. The aim of the present work was to prepare Co-containing β-tricalcium phosphate (Co-TCP) ceramics with different contents of calcium substituted by cobalt (0, 2, 5 mol%) and to investigate the effect of Co substitution on their physicochemical and biological properties. Co-TCP powders were synthesized by a chemistry precipitation method and Co-TCP ceramics were prepared by sintering the powder compacts. The effect of Co substitution on phase transition and the sintering property of the β-TCP ceramics was investigated. The proliferation and VEGF expression of human bone marrow mesenchymal stem cells (HBMSCs) cultured with both powder extracts and ceramic discs of Co-TCP was further evaluated. The in vitro angiogenesis was evaluated by the tube-like structure formation of human umbilical vein endothelial cells (HUVECs) cultured on ECMatrix™ in the presence of powder extracts. The results showed that Co substitution suppressed the phase transition from β- to α-TCP. Both the powder extracts and ceramic discs of Co-TCP had generally good cytocompatibility to support HBMSC growth. Importantly, the incorporation of Co into β-TCP greatly stimulated VEGF expression of HBMSCs and Co-TCP showed a significant enhancement of network structure formation of HUVECs compared with pure TCP. Our results suggested that the incorporation of Co into bioceramics is a potential viable way to enhance angiogenic properties of biomaterials. Co-TCP bioceramics may be used for bone tissue regeneration with improved angiogenic capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

YBCO wires which consist of well oriented plate-like fine grains are fabricated using a moving furnace to achieve higher mechanical strength. Melt-texturing experiments have been undertaken on YBCO wires with two different compositions: YBa1.5Cu2.9O7-x, and YBa1.8Cu3.0O7-x. Wires are extruded from a mixture of precursor powders (formed by a coprecipitation process) then textured by firing in a moving furnace. Size of secondary phases such as barium cuprate and copper oxide, and overall composition of the sample affect the orientation of the fine grains. At zero magnetic field, the YBa1.5Cu2.9O7-x wire shows the highest critical current density of 1,450 Acm-2 and 8,770 Acm-2 at 77K and 4.2K, respectively. At 1 T, critical current densities of 30 Acm-2 and 200 Acm-2, respectively, are obtained at 77K and 4.2K. Magnetisation curves are also obtained for one sample to evaluate critical current density using the Bean model. Analysis of the microstructure indicates that the starting composition of the green body significantly affects the achievement of grain alignment via melt-texturing processes.