25 resultados para Ferrajoli, Luigi
em Queensland University of Technology - ePrints Archive
Resumo:
In recent decades, concepts and ideas from James J. Gibson’s theory of direct perception in ecological psychology have been applied to the study of how perception and action regulate sport performance. This article examines the influence of different streams of thought in ecological psychology for studying cognition and action in the diverse behavioural contexts of sport and exercise. In discussing the origins of ecological psychology it can be concluded that psychologists such as Lewin, and to some extent Heider, provided the initial impetus for the development of key ideas. We argue that the papers in this special issue clarify that the different schools of thinking in ecological psychology have much to contribute to theoretical and practical developments in sport and exercise psychology. For example, Gibson emphasized and formalized how the individual is coupled with the environment; Brunswik raised the issue of the ontology of probability in human behaviour and the problem of representative design for experimental task constraints; Barker looked carefully into extra-individual behavioural contexts and Bronfenbrenner presented insights pertinent to the relations between behaviour contexts, and macro influences on behaviour. In this overview, we highlight essential issues from the main schools of thought of relevance to the contexts of sport and exercise, and we consider some potential theoretical linkages with dynamical systems theory.
Resumo:
Children and adolescents now communicate online to form and/or maintain relationships with friends, family, and strangers. Relationships in “real life” are important for children’s and adolescents’ psychosocial development; however, they can be difficult for those who experience feelings of loneliness and/or social anxiety. The aim of this study was to investigate differences in usage of online communication patterns between children and adolescents with and without self-reported loneliness and social anxiety. Six hundred and twenty-six students aged between 10-16 years completed a survey on the amount of time they spent communicating online, the topics they discussed, the partners they engaged with, and their purposes for communicating over the Internet. Participants were administered a shortened version of the UCLA Loneliness Scale and an abbreviated sub-scale of the Social Anxiety Scale for Adolescents (SAS-A). Additionally, age and gender differences in usage of the aforementioned online communication patterns were examined across the entire sample. Findings revealed that children and adolescents who self-reported being lonely communicated online significantly more frequently about personal things and intimate topics than did those who did not self-report being lonely. The former were motivated to use online communication significantly more frequently to compensate for their weaker social skills to meet new people. Results suggest that Internet usage allows them to fulfill critical needs of social interactions, self-disclosure, and identity exploration. Future research, however, should explore whether or not the benefits derived from online communication may also facilitate lonely children’s and adolescents’ offline social relationships.
Resumo:
Children and adolescents are now using online communication to form and/or maintain relationships with strangers and/or friends. Relationships in real life are important for children and adolescents in identity formation and general development. However, social relationships can be difficult for those who experience feelings of loneliness and social anxiety. The current study aimed to replicate and extend research conducted by Valkenburg and Peter (2007b), by investigating differences in online communication patterns between children and adolescents with and without selfreported loneliness and social anxiety. Six hundred and twenty-six students aged 10-16 years completed a questionnaire survey about the amount of time they engaged in online communication, the topics they discussed, who they communicated with, and their purposes of online communication. Following Valkenburg and Peter (2007b), loneliness was measured with a shortened version of the UCLA Loneliness Scale (Version 3) developed by Russell (1996), whereas social anxiety was assessed with a sub-scale of the Social Anxiety Scale for Adolescents (La Greca & Lopez, 1998). The sample was divided into four groups of children and adolescents: 220 were “non-socially anxious and non-lonely”, 139 were “socially anxious but not lonely”, 107 were “lonely but not socially anxious”, and 159 were “lonely and socially anxious”. A one-way ANOVA and chi-square tests were conducted to evaluate the aforementioned differences between these groups. The results indicated that children and adolescents who reported being lonely used online communication differently from those who did not report being lonely. Essentially, the former communicated online more frequently about personal things and intimate topics, but also to compensate for their weak social skills and to meet new people. Further analyses on gender differences within lonely children and adolescents revealed that boys and girls communicated online more frequently with different partners. It was concluded that for these vulnerable individuals online communication may fulfil needs of self-disclosure, identity exploration, and social interactions. However, future longitudinal studies combining a quantitative with a qualitative approach would better address the relationship between Internet use and psychosocial well-being. The findings also suggested the need for further exploration of how such troubled children and adolescents can use the Internet beneficially.
Resumo:
The aim of this paper is to show how principles of ecological psychology and dynamical systems theory can underpin a philosophy of coaching practice in a nonlinear pedagogy. Nonlinear pedagogy is based on a view of the human movement system as a nonlinear dynamical system. We demonstrate how this perspective of the human movement system can aid understanding of skill acquisition processes and underpin practice for sports coaches. We provide a description of nonlinear pedagogy followed by a consideration of some of the fundamental principles of ecological psychology and dynamical systems theory that underpin it as a coaching philosophy. We illustrate how each principle impacts on nonlinear pedagogical coaching practice, demonstrating how each principle can substantiate a framework for the coaching process.
Resumo:
Process mining techniques are able to extract knowledge from event logs commonly available in today’s information systems. These techniques provide new means to discover, monitor, and improve processes in a variety of application domains. There are two main drivers for the growing interest in process mining. On the one hand, more and more events are being recorded, thus, providing detailed information about the history of processes. On the other hand, there is a need to improve and support business processes in competitive and rapidly changing environments. This manifesto is created by the IEEE Task Force on Process Mining and aims to promote the topic of process mining. Moreover, by defining a set of guiding principles and listing important challenges, this manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users. The goal is to increase the maturity of process mining as a new tool to improve the (re)design, control, and support of operational business processes.
Resumo:
Purpose: To assess the accuracy of intraocular pressure(IOP) measurements using rebound tonometry over disposable hydrogel (etafilcon A) and silicone hydrogel (senofilcon A) contact lenses (CLs) of different powers. Methods: The experimental group comprised 36 subjects (19 male, 17 female). IOP measurements were undertaken on the subject’s right eyes in random order using a rebound tonometer (ICare). The CLs had powers of +2.00D, −2.00D and−6.00D. Six measurements were taken over each contact lens and also before and after the CLs had been worn. Results: A good correlation was found between IOP measurements with and without CLs (all r≥0.80; p < 0.05). Bland Altman plots did not show any significant trend in the difference in IOP readings with and without CLs as a function of IOP value. A two-way ANOVA revealed a significant effect of material and power (p < 0.01) but no interaction. All the comparisons between the measurements without CLs and with hydrogel CLs were significant (p < 0.01). The comparisons with silicone hydrogel CLs were not significant. Conclusions: Rebound tonometry can be reliably performed over silicone hydrogel CLs. With hydrogel CLs, the measurements were lower than those without CLs. However, despite the fact that these differences were statistically significant, their clinical significance was minimal.
Low temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells
Resumo:
The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multi-wall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultra-thin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.
Resumo:
The notion of territorial strategy emerged in the 1990s and has become more and more popular since. It refers to that combination of factors purposely assembled by governments, private and public companies, universities, and industrial associations to exploit a specific geographic competitive advantage in order to boost economic growth through the development of entrepreneurial activity and innovation. Three factors are generally considered to be the building blocks of a territorial strategy: natural resources, human capital, and industrial capabilities. Natural resources derive from environ mental conditions and represent raw materials or land available in a region. The presence of natural resources characterizes the typology of an industry (related to tourism, oil, wood, fish, and so forth) that exists or could exist in a certain area. Human capital refers to the stock of competences available in a certain region resulting from education and work experience. Industrial capabilities relate to complex constructs of specialized expertise, the confidence to apply knowledge and skills in various contexts and under changing conditions, and an ability repeatedly to improve methods and processes in a specific industry.
Resumo:
Crop simulation models have the potential to assess the risk associated with the selection of a specific N fertilizer rate, by integrating the effects of soil-crop interactions on crop growth under different pedo-climatic and management conditions. The objective of this study was to simulate the environmental and economic impact (nitrate leaching and N2O emissions) of a spatially variable N fertilizer application in an irrigated maize field in Italy. The validated SALUS model was run with 5 nitrogen rates scenarios, 50, 100, 150, 200, and 250 kg N ha−1, with the latter being the N fertilization adopted by the farmer. The long-term (25 years) simulations were performed on two previously identified spatially and temporally stable zones, a high yielding and low yielding zone. The simulation results showed that N fertilizer rate can be reduced without affecting yield and net return. The marginal net return was on average higher for the high yield zone, with values ranging from 1550 to 2650 € ha−1 for the 200 N and 1485 to 2875 € ha−1 for the 250 N. N leaching varied between 16.4 and 19.3 kg N ha−1 for the 200 N and the 250 N in the high yield zone. In the low yield zone, the 250 N had a significantly higher N leaching. N2O emissions varied between 0.28 kg N2O ha−1 for the 50 kg N ha−1 rate to a maximum of 1.41 kg N2O ha−1 for the 250 kg N ha−1 rate.
Resumo:
In 2004 Prahalad made managers aware of the great economic opportunity that the population at the BoP (Base of the Pyramid) represents for business in the form of new potential consumers. However, MNCs (Multi-National Corporations) generally continue to penetrate low income markets with the same strategies used at the top of the pyramid or choose not to invest at all in these regions because intimidated by having to re-envision their business models. The introduction of not re-arranged business models and products into developing countries has done nothing more over the years than induce new needs and develop new dependencies. By conducting a critical review of the literature this paper investigates and compares innovative approaches to operate in developing markets, which depart from the usual Corporate Social Responsibility marketing rhetoric, and rather consider the potential consumer at the BoP as a ring of continuity in the value chain − a resource that can itself produce value. Based on the concept of social embeddedness (London & Hart, 2004) and the principle that an open system contemplates different provisions (i.e. MNCs bring processes and technology, NGOs cultural mediating skills, governments laws and regulations, native people know-how and traditions), this paper concludes with a new business model reference that empowers all actors to contribute to value creation, while allowing MNCs to support local growth by turning what Prahalad called ‘inclusive capitalism’ into a more sustainable ‘inclusive entrepreneurial development’.
Resumo:
Background Non-fatal health outcomes from diseases and injuries are a crucial consideration in the promotion and monitoring of individual and population health. The Global Burden of Disease (GBD) studies done in 1990 and 2000 have been the only studies to quantify non-fatal health outcomes across an exhaustive set of disorders at the global and regional level. Neither effort quantified uncertainty in prevalence or years lived with disability (YLDs). Methods Of the 291 diseases and injuries in the GBD cause list, 289 cause disability. For 1160 sequelae of the 289 diseases and injuries, we undertook a systematic analysis of prevalence, incidence, remission, duration, and excess mortality. Sources included published studies, case notification, population-based cancer registries, other disease registries, antenatal clinic serosurveillance, hospital discharge data, ambulatory care data, household surveys, other surveys, and cohort studies. For most sequelae, we used a Bayesian meta-regression method, DisMod-MR, designed to address key limitations in descriptive epidemiological data, including missing data, inconsistency, and large methodological variation between data sources. For some disorders, we used natural history models, geospatial models, back-calculation models (models calculating incidence from population mortality rates and case fatality), or registration completeness models (models adjusting for incomplete registration with health-system access and other covariates). Disability weights for 220 unique health states were used to capture the severity of health loss. YLDs by cause at age, sex, country, and year levels were adjusted for comorbidity with simulation methods. We included uncertainty estimates at all stages of the analysis. Findings Global prevalence for all ages combined in 2010 across the 1160 sequelae ranged from fewer than one case per 1 million people to 350 000 cases per 1 million people. Prevalence and severity of health loss were weakly correlated (correlation coefficient −0·37). In 2010, there were 777 million YLDs from all causes, up from 583 million in 1990. The main contributors to global YLDs were mental and behavioural disorders, musculoskeletal disorders, and diabetes or endocrine diseases. The leading specific causes of YLDs were much the same in 2010 as they were in 1990: low back pain, major depressive disorder, iron-deficiency anaemia, neck pain, chronic obstructive pulmonary disease, anxiety disorders, migraine, diabetes, and falls. Age-specific prevalence of YLDs increased with age in all regions and has decreased slightly from 1990 to 2010. Regional patterns of the leading causes of YLDs were more similar compared with years of life lost due to premature mortality. Neglected tropical diseases, HIV/AIDS, tuberculosis, malaria, and anaemia were important causes of YLDs in sub-Saharan Africa. Interpretation Rates of YLDs per 100 000 people have remained largely constant over time but rise steadily with age. Population growth and ageing have increased YLD numbers and crude rates over the past two decades. Prevalences of the most common causes of YLDs, such as mental and behavioural disorders and musculoskeletal disorders, have not decreased. Health systems will need to address the needs of the rising numbers of individuals with a range of disorders that largely cause disability but not mortality. Quantification of the burden of non-fatal health outcomes will be crucial to understand how well health systems are responding to these challenges. Effective and affordable strategies to deal with this rising burden are an urgent priority for health systems in most parts of the world. Funding Bill & Melinda Gates Foundation.
Resumo:
Although Basin and Range–style extension affected large areas of western Mexico after the Late Eocene, most consider that extension in the Gulf of California region began as subduction waned and ended ca. 14–12.5 Ma. A general consensus also exists in considering Early and Middle Miocene volcanism of the Sierra Madre Occidental and Comondú Group as subduction related, whereas volcanism after ca. 12.5 Ma is extension related. Here we present a new regional geologic study of the eastern Gulf of California margin in the states of Nayarit and Sinaloa, Mexico, backed by 43 new Ar-Ar and U-Pb mineral ages, and geochemical data that document an earlier widespread phase of extension. This extension across the southern and central Gulf Extensional Province began between Late Oligocene and Early Miocene time, but was focused in the region of the future Gulf of California in the Middle Miocene. Late Oligocene to Early Miocene rocks across northern Nayarit and southern Sinaloa were affected by major approximately north-south– to north-northwest– striking normal faults prior to ca. 21 Ma. Between ca. 21 and 11 Ma, a system of north-northwest–south-southeast high angle extensional faults continued extending the southwestern side of the Sierra Madre Occidental. Rhyolitic domes, shallow intrusive bodies, and lesser basalts were emplaced along this extensional belt at 20–17 Ma. Rhyolitic rocks, in particular the domes and lavas, often show strong antecrystic inheritance but only a few Mesozoic or older xenocrysts, suggesting silicic magma generation in the mid-upper crust triggered by an extension induced basaltic infl ux. In northern Sinaloa, large grabens were occupied by huge volcanic dome complexes ca. 21–17 Ma and filled by continental sediments with interlayered basalts dated as 15–14 Ma, a stratigraphy and timing very similar to those found in central Sonora (northeastern Gulf of California margin). Early to Middle Miocene volcanism occurred thus in rift basins, and was likely associated with decompression melting of upper mantle (inducing crustal partial melting) rather than with fluxing by fluids from the young and slow subducting microplates. Along the eastern side of the Gulf of California coast, from Farallón de San Ignacio island offshore Los Mochis, Sinaloa, to San Blas, Nayarit, a strike distance of >700 km, flat lying basaltic lavas dated as ca. 11.5–10 Ma are exposed just above the present sea level. Here crustal thickness is almost half that in the unextended core of the adjacent Sierra Madre Occidental, implying signifi cant lithosphere stretching before ca. 11 Ma. This mafic pulse, with subdued Nb-Ta negative spikes, may be related to the detachment of the lower part of the subducted slab, allowing an upward asthenospheric flow into an upper mantle previously modified by fluid fluxes related to past subduction. Widespread eruption of very uniform oceanic island basalt–like lavas occurred by the late Pliocene and Pleistocene, only 20 m.y. after the onset of rifting and ~9 m.y. after the end of subduction, implying that preexisting subduction-modified mantle had now become isolated from melt source regions. Our study shows that rifting across the southern-central Gulf Extensional Province began much earlier than the Late Miocene and provided a fundamental control on the style and composition of volcanism from at least 30 Ma. We envision a sustained period of lithospheric stretching and magmatism during which the pace and breadth of extension changed ca. 20–18 Ma to be narrower, and again after ca. 12.5 Ma, when the kinematics of rifting became more oblique.
Resumo:
A controlled layer of multi-wall carbon nanotubes (MWCNT) was grown directly on top of fluorine-doped tin oxide (FTO) glass electrodes as a surface modifier for improving the performance of polymer solar cells. By using low-temperature chemical vapor deposition with short synthesis times, very short MWCNTs were grown, these uniformly decorating the FTO surface. The chemical vapor deposition parameters were carefully refined to balance the tube size and density, while minimizing the decrease in conductivity and light harvesting of the electrode. As created FTO/CNT electrodes were applied to bulk-heterojunction polymer solar cells, both in direct and inverted architecture. Thanks to the inclusion of MWCNT and the consequent nano-structuring of the electrode surface, we observe an increase in external quantum efficiency in the wavelength range from 550 to 650 nm. Overall, polymer solar cells realized with these FTO/CNT electrodes attain power conversion efficiency higher than 2%, outclassing reference cells based on standard FTO electrodes.