12 resultados para Femtosecond filamentation
em Queensland University of Technology - ePrints Archive
Resumo:
We investigated the influence of different gas environments on the fabrication of surfaces, homogeneously covered with equally sized and spaced micro-structures. Two types of structures have been successfully micro-machined with a femtosecond laser on titanium surfaces in various atmospheres. The surface chemistry of samples machined in oxygen and helium shows TiO2, while machining in nitrogen leads to an additional share of TiN. The actual surface structure was found to vary significantly as a function of the gas environment. We found that the ablated particles and their surface triggered two consecutive events: The optical properties of the gas environment became non-isotropic which then led to the pulse intensity being redistributed throughout the cross section of the laser beam. Additionally, the effective intensity was further reduced for TiN surfaces due to TiN's high reflectivity. Thus, the settings for the applied raster-scanning machining method had to be adjusted for each gas environment to produce comparable structures. In contrast to previous studies, where only noble gases were found suitable to produce homogeneous patches, we obtained them in an oxygen environment.
Resumo:
Background Wavefront-guided Laser-assisted in situ keratomileusis (LASIK) is a widespread and effective surgical treatment for myopia and astigmatic correction but whether it induces higher-order aberrations remains controversial. The study was designed to evaluate the changes in higher-order aberrations after wavefront-guided ablation with IntraLase femtosecond laser in moderate to high astigmatism. Methods Twenty-three eyes of 15 patients with moderate to high astigmatism (mean cylinder, −3.22 ± 0.59 dioptres) aged between 19 and 35 years (mean age, 25.6 ± 4.9 years) were included in this prospective study. Subjects with cylinder ≥ 1.5 and ≤2.75 D were classified as moderate astigmatism while high astigmatism was ≥3.00 D. All patients underwent a femtosecond laser–enabled (150-kHz IntraLase iFS; Abbott Medical Optics Inc) wavefront-guided ablation. Uncorrected (UDVA), corrected (CDVA) distance visual acuity in logMAR, keratometry, central corneal thickness (CCT) and higher-order aberrations (HOAs) over a 6 mm pupil, were assessed before and 6 months, postoperatively. The relationship between postoperative change in HOA and preoperative mean spherical equivalent refraction, mean astigmatism, and postoperative CCT were tested. Results At the last follow-up, the mean UDVA was increased (P < 0.0001) but CDVA remained unchanged (P = 0.48) and no eyes lost ≥2 lines of CDVA. Mean spherical equivalent refraction was reduced (P < 0.0001) and was within ±0.50 D range in 61 % of eyes. The average corneal curvature was flatter by 4 D and CCT was reduced by 83 μm (P < 0.0001, for all), postoperatively. Coma aberrations remained unchanged (P = 0.07) while the change in trefoil (P = 0.047) postoperatively, was not clinically significant. The 4th order HOAs (spherical aberration and secondary astigmatism) and the HOA root mean square (RMS) increased from −0.18 ± 0.07 μm, 0.04 ± 0.03 μm and 0.47 ± 0.11 μm, preoperatively, to 0.33 ± 0.19 μm (P = 0.004), 0.21 ± 0.09 μm (P < 0.0001) and 0.77 ± 0.27 μm (P < 0.0001), six months postoperatively. The change in spherical aberration after the procedure increased with an increase in the degree of preoperative myopia. Conclusions Wavefront-guided IntraLASIK offers a safe and effective option for vision and visual function improvement in astigmatism. Although, reduction of HOA is possible in a few eyes, spherical-like aberrations are increased in majority of the treated eyes.
Resumo:
A novel gold coated femtosecond laser nanostructured sapphire surface – an “optical nose” - based on surface-enhanced Raman spectroscopy (SERS) for detecting vapours of explosive substances was investigated. Four different nitroaromatic vapours at room temperature were tested. Sensor responses were unambiguous and showed response in the range of 0.05 – 15 uM at 25 °C. The laser fabricated substrate nanostructures produced up to an eight-fold increase in Raman signal over that observed on the unstructured portions of the substrate. This work demonstrates a simple sensing system that is compatible with commercial manufacturing practices to detect taggants in explosives which can undertake as part of an integrated security or investigative mission.
Resumo:
Decoherence of quantum entangled particles is observed in most systems, and is usually caused by system-environment interactions. Disentangling two subsystems A and B of a quantum systemAB is tantamount to erasure of quantum phase relations between A and B. It is widely believed that this erasure is an innocuous process, which e.g. does not affect the energies of A and B. Surprisingly, recent theoretical investigations by different groups showed that disentangling two systems, i.e. their decoherence, can cause an increase of their energies. Applying this result to the context of neutronCompton scattering from H2 molecules, we provide for the first time experimental evidence which supports this prediction. The results reveal that the neutron-proton collision leading to the cleavage of the H-H bond in the sub-femtosecond timescale is accompanied by larger energy transfer (by about 3%) than conventional theory predicts. It is proposed to interpreted the results by considering the neutron-proton collisional system as an entangled open quantum system being subject to decoherence owing to the interactions with the “environment” (i.e., two electrons plus second proton of H2).
Resumo:
We report on the measurement of second-harmonic signals from hyperplastic parenchyma and stroma in malignant human prostate tissue under femtosecond pulsed illumination in the wavelength range from 730 to 870 nm. In particular, the relationship of the second-harmonic generation to the excitation wavelength is measured. The result in these two regions behaves considerably differently and thus provides a possible indicator for identifying tissue components and malignancy.
Resumo:
The dependence of second harmonic generation (SHG) from hyperplastic parenchyma and stroma in maligant human prostate tissue on excitation wavelengths was measured. A femtosecond pulsed laser, a scanning microscope and a spectrograph were used to perform the measurements. The spectra were measured under excitation power of 10 mW at excitation wavelengths of 730 nm, 750 nm, 800 nm, 850 nm and 890 nm. Analysis suggested that the SHG in prostate tissue is highly structured and wavelength dependent signifying its ability to be used as an indicator for recognizing tissue components, ultrastructures, micro-environments and diseases.
Resumo:
We investigate the photoexcited state dynamics in a donor-acceptor copolymer, poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]- pyrrole-1,4-dione-alt-naphthalene} (pDPP-TNT), by picosecond fluorescence and femtosecond transient absorption spectroscopies. Timeresolved fluorescence lifetime measurements of pDPP-TNT thin films reveal that the lifetime of the singlet excited state is 185 ± 5 ps and that singlet-singlet annihilation occurs at excitation photon densities above 6 × 1017 photons/cm3. From the results of singlet-singlet annihilation analysis, we estimate that the single-singlet annihilation rate constant is (6.0 ± 0.2) × 109cm3 s-1 and the singlet diffusion length is -7 nm. From the comparison of femtosecond transient absorption measurements and picosecond fluorescence measurements, it is found that the time profile of the photobleaching signal in the charge-transfer (CT) absorption band coincides with that of the fluorescence intensity and there is no indication of long-lived species, which clearly suggests that charged species, such as polaron pairs and triplet excitons, are not effectively photogenerated in the neat pDPP-TNT polymer.
Resumo:
PURPOSE - To present the results of same-day topography-guided photorefractive keratectomy (TG-PRK) and corneal collagen cross-linking (CXL) after intrastromal corneal ring (ISCR) implantation in patients with keratoconus. METHODS - Thirty-three patients (41 eyes) aged between 19 and 45 years were included in this prospective study. All patients underwent a femtosecond laser-enabled (Intralase FS; Abbott Medical Optics, Inc.) placement of intracorneal ring segments (Kerarings; Mediphacos, Brazil). Uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), and keratometry readings remained stable for 6 months. Same-day PRK and CXL was subsequently performed in all patients. RESULTS - After 12 months of completion of the procedure, mean UDVA in log of minimal angle of resolution was significantly improved (0.74±0.54-0.10±0.16); CDVA did not improve significantly but 85% of eyes maintained or gained multiple lines of CDVA; mean refraction spherical equivalent improved (from -3.03±1.98 to -0.04±0.99 D), all keratometry readings were significantly reduced, from preoperative values, but coma did not vary significantly from preoperative values. Central corneal thickness and corneal thickness at the thinnest point were significantly (P<0.0001) reduced from 519.76±29.33 and 501.87±31.50 preoperatively to 464.71±36.79 and 436.55±47.42 postoperatively, respectively. Safety and efficacy indices were 0.97 and 0.88, respectively. From 6 months up until more than 1 year of follow-up, further significant improvement was observed only for UDVA (P<0.0001). CONCLUSIONS - Same-day combined TG-PRK and CXL after ISCR implantation is a safe and effective option for improving visual acuity and visual function, and it halts the progression of the keratoconus. The improvements recorded after 6 months of follow-up were maintained or improved upon 1 year after the procedure.
Resumo:
Linewidth measurement of a femtosecond laser direct-written distributed feedback (DFB) waveguide laser (WGL) is reported. The WGL was fabricated in Yb-doped phosphate glass using the femtosecond laser direct-write technique. The linewidth was measured using a loss-compensated recirculating delayed self-heterodyne interferometer. By recirculating the output signal in a 10.2-km fiber delay loop, the linewidth was measured to be 35.4±1.4 kHz at a delay time of 306 μs , which is comparable with that of narrow-linewidth fiber DFB lasers.