194 resultados para Fault tolerant computing
em Queensland University of Technology - ePrints Archive
Resumo:
The observing failure and feedback instability might happen when the partial sensors of a satellite attitude control system (SACS) go wrong. A fault diagnosis and isolation (FDI) method based on a fault observer is introduced to detect and isolate the fault sensor at first. Based on the FDI result, the object system state-space equation is transformed and divided into a corresponsive triangular canonical form to decouple the normal subsystem from the fault subsystem. And then the KX fault-tolerant observers of the system in different modes are designed and embedded into online monitoring. The outputs of all KX fault-tolerant observers are selected by the control switch process. That can make sense that the SACS is part-observed and in stable when the partial sensors break down. Simulation results demonstrate the effectiveness and superiority of the proposed method.
Resumo:
Advanced substation applications, such as synchrophasors and IEC 61850-9-2 sampled value process buses, depend upon highly accurate synchronizing signals for correct operation. The IEEE 1588 Precision Timing Protocol (PTP) is the recommended means of providing precise timing for future substations. This paper presents a quantitative assessment of PTP reliability using Fault Tree Analysis. Two network topologies are proposed that use grandmaster clocks with dual network connections and take advantage of the Best Master Clock Algorithm (BMCA) from IEEE 1588. The cross-connected grandmaster topology doubles reliability, and the addition of a shared third grandmaster gives a nine-fold improvement over duplicated grandmasters. The performance of BMCA mediated handover of the grandmaster role during contingencies in the timing system was evaluated experimentally. The 1 µs performance requirement of sampled values and synchrophasors are met, even during network or GPS antenna outages. Slave clocks are shown to synchronize to the backup grandmaster in response to degraded performance or loss of the main grandmaster. Slave disturbances are less than 350 ns provided the grandmaster reference clocks are not offset from one another. A clear understanding of PTP reliability and the factors that affect availability will encourage the adoption of PTP for substation time synchronization.
Resumo:
A modularized battery system with Double Star Chopper Cell (DSCC) based modular multilevel converter is proposed for a battery operated electric vehicle (EV). A design concept for the modularized battery micro-packs for DSCC is described. Multidimensional pulse width modulation (MD-PWM) with integrated inter-module SoC balancing and fault tolerant control is proposed and explained. The DSCC can be operated either as an inverter to drive the EV motor or as a synchronous rectifier connected to external three phase power supply equipment for charging the battery micro-packs. The methods of operation as inverter and synchronous rectifier with integrated inter-module SoC balancing and fault tolerant control are discussed. The proposed system operation as inverter and synchronous rectifier are verified through simulations and the results are presented.
Resumo:
A vessel stabilizer control system includes a sensor fault detection means which senses the availability of sensing signals from a gyrostabilizer precession motion sensor and a vessel roll motion sensor. The control system controls the action of a gyro-actuator which is mechanically coupled to a gyrostabilizer. The benefit of employing fault sensing of the sensors providing the process control variables is that the sensed number of available process control variables (or sensors) can be used to activate a tiered system of control modes. Each tiered control mode is designed to utilize the available process control variables to ensure safe and effective operation of the gyrostabilizer that is tolerant of sensor faults and loss of power supply. A control mode selector is provided for selecting the appropriate control mode based on the number of available process control variables.
Resumo:
Multi-agent systems (MAS) advocate an agent-based approach to software engineering based on decomposing problems in terms of decentralized, autonomous agents that can engage in flexible, high-level interactions. This chapter introduces scalable fault tolerant agent grooming environment (SAGE), a second-generation Foundation for Intelligent Physical Agents (FIPA)-compliant multi-agent system developed at NIIT-Comtec, which provides an environment for creating distributed, intelligent, and autonomous entities that are encapsulated as agents. The chapter focuses on the highlight of SAGE, which is its decentralized fault-tolerant architecture that can be used to develop applications in a number of areas such as e-health, e-government, and e-science. In addition, SAGE architecture provides tools for runtime agent management, directory facilitation, monitoring, and editing messages exchange between agents. SAGE also provides a built-in mechanism to program agent behavior and their capabilities with the help of its autonomous agent architecture, which is the other major highlight of this chapter. The authors believe that the market for agent-based applications is growing rapidly, and SAGE can play a crucial role for future intelligent applications development. © 2007, IGI Global.
Resumo:
MapReduce is a computation model for processing large data sets in parallel on large clusters of machines, in a reliable, fault-tolerant manner. A MapReduce computation is broken down into a number of map tasks and reduce tasks, which are performed by so called mappers and reducers, respectively. The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation. From the computational point of view, the mappers/reducers placement problem is a generation of the classical bin packing problem, which is NPcomplete. Thus, in this paper we propose a new grouping genetic algorithm for the mappers/reducers placement problem in cloud computing. Compared with the original one, our grouping genetic algorithm uses an innovative coding scheme and also eliminates the inversion operator which is an essential operator in the original grouping genetic algorithm. The new grouping genetic algorithm is evaluated by experiments and the experimental results show that it is much more efficient than four popular algorithms for the problem, including the original grouping genetic algorithm.
Resumo:
This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating correspond- ing velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs.
Resumo:
This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating corresponding velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs.
Resumo:
MapReduce is a computation model for processing large data sets in parallel on large clusters of machines, in a reliable, fault-tolerant manner. A MapReduce computation is broken down into a number of map tasks and reduce tasks, which are performed by so called mappers and reducers, respectively. The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation in cloud computing. From the computational point of view, the mappers/reducers placement problem is a generation of the classical bin packing problem, which is NP-complete. Thus, in this paper we propose a new heuristic algorithm for the mappers/reducers placement problem in cloud computing and evaluate it by comparing with other several heuristics on solution quality and computation time by solving a set of test problems with various characteristics. The computational results show that our heuristic algorithm is much more efficient than the other heuristics and it can obtain a better solution in a reasonable time. Furthermore, we verify the effectiveness of our heuristic algorithm by comparing the mapper/reducer placement for a benchmark problem generated by our heuristic algorithm with a conventional mapper/reducer placement which puts a fixed number of mapper/reducer on each machine. The comparison results show that the computation using our mapper/reducer placement is much cheaper than the computation using the conventional placement while still satisfying the computation deadline.
Resumo:
In a conventional ac motor drive using field-oriented control, a dc-link voltage, speed, and at least two current sensors are required. Hence, in the event of sensor failure, the performance of the drive system can be severely compromised. This paper presents a sensor fault-tolerant control strategy for interior permanent-magnet synchronous motor (IPMSM) drives. Three independent observers are proposed to estimate the speed, dc-link voltage, and currents of the machine. If a sensor fault is detected, the drive system isolates the faulty sensor while retaining the remaining functional ones. The signal is then acquired from the corresponding observer in order to maintain the operation of the drive system. The experimental results provided verify the effectiveness of the proposed approach.
Resumo:
This paper presents a practical recursive fault detection and diagnosis (FDD) scheme for online identification of actuator faults for unmanned aerial systems (UASs) based on the unscented Kalman filtering (UKF) method. The proposed FDD algorithm aims to monitor health status of actuators and provide indication of actuator faults with reliability, offering necessary information for the design of fault-tolerant flight control systems to compensate for side-effects and improve fail-safe capability when actuator faults occur. The fault detection is conducted by designing separate UKFs to detect aileron and elevator faults using a nonlinear six degree-of-freedom (DOF) UAS model. The fault diagnosis is achieved by isolating true faults by using the Bayesian Classifier (BC) method together with a decision criterion to avoid false alarms. High-fidelity simulations with and without measurement noise are conducted with practical constraints considered for typical actuator fault scenarios, and the proposed FDD exhibits consistent effectiveness in identifying occurrence of actuator faults, verifying its suitability for integration into the design of fault-tolerant flight control systems for emergency landing of UASs.
Resumo:
Interior permanent-magnet synchronous motors (IPMSMs) become attractive candidates in modern hybrid electric vehicles and industrial applications. Usually, to obtain good control performance, the electric drives of this kind of motor require one position, one dc link, and at least two current sensors. Failure of any of these sensors might lead to degraded system performance or even instability. As such, sensor fault resilient control becomes a very important issue in modern drive systems. This paper proposes a novel sensor fault detection and isolation algorithm based on an extended Kalman filter. It is robust to system random noise and efficient in real-time implementation. Moreover, the proposed algorithm is compact and can detect and isolate all the sensor faults for IPMSM drives. Thorough theoretical analysis is provided, and the effectiveness of the proposed approach is proven by extensive experimental results.
Resumo:
This demonstration highlights the applications of our research work i.e. second generation (Scalable Fault Tolerant Agent Grooming Environment - SAGE) Multi Agent System, Integration of Software Agents and Grid Computing and Autonomous Agent Architecture in the Agent Platform. It is a conference planner application that uses collaborative effort of services deployed geographically wide in different technologies i.e. Software Agents, Grid computing and Web services to perform useful tasks as required. Copyright 2005 ACM.