15 resultados para Extrudate swell
em Queensland University of Technology - ePrints Archive
Resumo:
Despite many arguments to the contrary, the three-act story structure, as propounded and refined by Hollywood continues to dominate the blockbuster and independent film markets. Recent successes in post-modern cinema could indicate new directions and opportunities for low-budget national cinemas.
Resumo:
In this video, an abstract kaleidoscopic pattern slowly morphs and changes colour. It is accompanied by a male voice performing a word association or stream-of-consciousness activity. This work examines the nature of consciousness and identity in a contemporary context. It mixes the languages of meditation, new age philosophy and pop-psychology. Drawing on Zygmunt Bauman’s theoretical work on “liquid modernity”, this work questions how and where we find space for contemplation in a contemporary context increasingly defined by temporary social bonds, consumer choices and private anxieties.
Resumo:
Solutions to remedy the voltage disturbances have been mostly suggested only for industrial customers. However, not much research has been done on the impact of the voltage problems on residential facilities. This paper proposes a new method to reduce the effect of voltage dip and swell in smart grids equipped by communication systems. To reach this purpose, a voltage source inverter and the corresponding control system are employed. The behavior of a power system during voltage dip and swell are analyzed. The results demonstrate reasonable improvement in terms of voltage dip and swell mitigation. All simulations are implemented in MATLAB/Simulink environment.
Resumo:
Budgie Smuggler is the first work of a series entitled slang, reflecting upon other, often unintended meanings behind popular Australian expressions. Synonymous with Australian beach humour, the term budgie smuggler unintentionally masks the desperately tragic plight of wildlife trafficked every year within and beyond our borders. Bird wildlife are fiercely protectively of their kin, often flocking to a site of distress of those trapped or injured - a commotion ensues, helping to scare predators away. The work contemplates our own position and action in response to our captive feathered friends. Budgie Smuggler is a soft resin/silicon, cotton material, fibreglass and recycled object based artwork.
Resumo:
The paper discusses the operating principles and control characteristics of a dynamic voltage restorer (DVR). It is assumed that the source voltages contain interharmonic components in addition to fundamental components. The main aim of the DVR is to produce a set of clean balanced sinusoidal voltages across the load terminals irrespective of unbalance, distortion and voltage sag/swell in the supply voltage. An algorithm has been discussed for extracting fundamental phasor sequence components from the samples of three-phase voltages or current waveforms having integer harmonics and interharmonics. The DVR operation based on extracted components is demonstrated. The switching signal is generated using a deadbeat controller. It has been shown that the DVR is able to compensate these interharmonic components such that the load voltages are perfectly regulated. The DVR operation under deep voltage sag is also discussed. The proposed DVR operation is verified through the computer simulation studies using the MATLAB software package.
Resumo:
The paper discusses the operating principles and control characteristics of a dynamic voltage restorer (DVR) that protects sensitive but unbalanced and/or distorted loads. The main aim of the DVR is to regulate the voltage at the load terminal irrespective of sag/swell, distortion, or unbalance in the supply voltage. In this paper, the DVR is operated in such a fashion that it does not supply or absorb any active power during the steady-state operation. Hence, a DC capacitor rather than a DC source can supply the voltage source inverter realizing the DVR. The proposed DVR operation is verified through extensive digital computer simulation studies.
Resumo:
Hypertrophic scars are formed by collagen overproduction in wounded areas and often occur in victims of severe burns. There are several methods for hypertrophic scar remediation and silicone gel therapy is one of the more successful methods. Research by others has shown that the activity of these gels may be due to migration of amphiphilic silicone oligomers from the gel and into the dermis, down-regulating production of collagen by fibroblasts. Normal silicone oil (PDMS) does not produce the same effect on fibroblasts. The main purpose of this project is the introduction of a particular amphiphilic silicone rake copolymer into an appropriate network which can absorb and release the silicone copolymer on the scarred area. Hydrogels are polymeric crosslinked networks which can swell in water or a drug solution, and gradually release the drug when applied to the skin. The application of gel enhances the effectiveness of the therapy, reduces the period of treatment and can be comfortable for patients to use. Polyethylene glycol (PEG) based networks have been applied in this research, because the amphiphilic silicone rake copolymer to be used as a therapy has polyethylene oxide (PEO) as a side chain. These PEO side chains have very similar chemical structure to a PEG gel chain so enhancing both the compatibility and the diffusion of the amphiphilic silicone rake copolymer into and out of the gel. Synthesis of PEG-based networks has been performed by two methods: in situ silsesquioxane formation as crosslink with a sol-gel reaction under different conditions and UV curing. PEG networks have low mechanical properties which is a fundamental limitation of the polymer backbone. For mechanical properties enhancement, composite networks were synthesized using nano-silica with different surface modification. The chemical structure of in situ silsesquioxane in the dry network has been examined by Solid State NMR, Differential Scanning Calorimetry (DSC) and swelling measurements in water. Mechanical properties of dry networks were tested by Dynamic Mechanical Thermal Analysis (DMTA) to determine modulus and interfacial interaction between silica and the network. In this way a family of self-reinforced networks has been produced that have been shown to absorb and deliver the active amphiphilic silicone- PEO rake copolymer.
Resumo:
Higher-order spectral analysis is used to detect the presence of secondary and tertiary forced waves associated with the nonlinearity of energetic swell observed in 8- and 13-m water depths. Higher-order spectral analysis techniques are first described and then applied to the field data, followed by a summary of the results.
Freshwater sensitivity of corrensite and chlorite/smectite in hydrocarbon reservoirs - an ESEM study
Resumo:
An Environmental Scanning Electron Microscope (ESEM) has been used to investigate the freshwater sensitivity of secondary corrensite (regularly interstratified chlorite/smectite) and chlorite-rich chlorite/smectite in order to determine whether hydrocarbon reservoirs hosting these clays should be regarded as freshwater sensitive. ESEM experiments involved an examination and close comparison of selected clay areas in three samples at high magnification before, during and after prolonged freshwater treatments. Corrensite and chlorine/smectite in the samples did not visibly swell when immersed in fresh water. After soaking in fresh water for up to three months, these clays retained their original morphology and associated porosity. Hence, the presence of corrensite or chlorite/smectite in a hydrocarbon reservoir need not indicate that the reservoir is freshwater sensitive. © 1994.
Resumo:
The water sensitivity of authigenic smectite- and illite-rich illite/smectites in sandstone reservoirs has been investigated using an Environmental Scanning Electron Microscope (ESEM). The ESEM enabled the illite/smectites to be directly observed in situ at high magnification during freshwater immersion, and was also particularly effective in allowing the same selected illite/smectite areas to be closely compared before and after freshwater treatments. The tendency of authigenic smectite-rich illite/smectite to swell on contact with fresh water varies greatly. Smectite-rich illite/smectite may osmotically swell to many times its original volume to form a gel which greatly reduces porosity and permeability, or may undergo only a subtle morphological change which has little or no adverse effect on reservoir quality. Authigenic illite-rich illite/smectite in sandstones does not swell when immersed in fresh water. Even after prolonged soaking in fresh water, illite-rich illite/smectite particles retain their original morphology. Accordingly, illite-rich illite/smectite in sandstones is unlikely to cause formation damage if exposed to freshwater-based fluids. © 1993.
Resumo:
Hydrogels are hydrophilic, three dimensional polymers that imbibe large quantities of water while remaining insoluble in aqueous solutions due to chemical or physical cross-linking. The polymers swell in water or biological fluids, immobilizing the bioactive agent, leading to drug release in a well-defined specific manner. Thus the hydrogels’ elastic properties, swellability and biocompatibility make them excellent formulations for drug delivery. Currently, many drug potencies and therapeutic effects are limited or otherwise reduced because of the partial degradation that occurs before the administered drug reaches the desired site of action. On the other hand, sustained release medications release drugs continually, rather than providing relief of symptoms and protection solely when necessary. In fact, it would be much better if drugs could be administered in a manner that precisely matches physiological needs at desired times and at the desired site (site specific targeting). There is therefore an unmet need to develop controlled drug delivery systems especially for delivery of peptide and protein bound drugs. The purpose of this project is to produce hydrogels for structural drug delivery and time-dependent sustained release of drugs (bioactive agents). We use an innovative polymerisation strategy based on native chemical ligation (NCL) to covalently cross-link polymers to form hydrogels. When mixed in aqueous solution, four armed (polyethylene glycol) amine (PEG-4A) end functionalised with thioester and four branched Nterminal cysteine peptide dendrimers spontaneously conjugated to produce biomimetic hydrogels. These hydrogels showed superior resistance to shear stress compared to an equivalent PEG macromonomer system and were shown to be proteolytically degradable with concomitant release of a model payload molecule. This is the first report of a peptide dendrimers/PEG macromonomer approach to hydrogel production and opens up the prospect of facile hydrogel synthesis together with tailored payload release.
Resumo:
Heat islands are a significant problem in urban spaces worldwide. The phenomenon occurs when air and surface temperatures in urban areas significantly exceed those experienced in nearby rural areas. There are two main causes of heat islands. The first is the use of highly absorptive construction materials in buildings and infrastructure, which soak up heat and radiate it back into the immediate surroundings. These materials, including but not limited to concrete, steel, asphalt and stone, are usually impermeable and so do not embody moisture that could dissipate some of the absorbed heat. The second cause relates to urban form, where the canyon-like configurations of buildings and streets channel and trap heat from the sun. In both cases, an absence of greenery and other soft landscaping can compound the problem by lowering capacity for cooling through shading and evotranspiration. Incidences of heat islands increase as urban areas swell in size and cover more land area, making the phenomenon an unwelcome side effect of global trends towards increased urbanisation. Heat islands create serious problems, including increased energy demand for cooling, declining air quality and heat stress for people and animals. In very severe cases, heat islands can compound the effects of high urban temperatures, leading to increased human mortality...
Resumo:
‘Ghost Wash’ unveils the past in a contemporary context. It is a blending of video projection, sound, music and performance that reconstructs the anger, the angularity, and the angst of Brisbane music from the late 70s through the 80s. The music is contained within an ongoing story about Brisbane music history.
Resumo:
Electrification of vehicular systems has gained increased momentum in recent years with particular attention to constant power loads (CPLs). Since a CPL potentially threatens system stability, stability analysis of hybrid electric vehicle with CPLs becomes necessary. A new power buffer configuration with battery is introduced to mitigate the effect of instability caused by CPLs. Model predictive control (MPC) is applied to regulate the power buffer to decouple source and load dynamics. Moreover, MPC provides an optimal tradeoff between modification of load impedance, variation of dc-link voltage and battery current ripples. This is particularly important during transients or starting of system faults, since battery response is not very fast. Optimal tradeoff becomes even more significant when considering low-cost power buffer without battery. This paper analyzes system models for both voltage swell and voltage dip faults. Furthermore, a dual mode MPC algorithm is implemented in real time offering improved stability. A comprehensive set of experimental results is included to verify the efficacy of the proposed power buffer.
Resumo:
This paper proposes a new multi-resource multi-stage scheduling problem for optimising the open-pit drilling, blasting and excavating operations under equipment capacity constraints. The flow process is analysed based on the real-life data from an Australian iron ore mine site. The objective of the model is to maximise the throughput and minimise the total idle times of equipment at each stage. The following comprehensive mining attributes and constraints have been considered: types of equipment; operating capacities of equipment; ready times of equipment; speeds of equipment; block-sequence-dependent movement times of equipment; equipment-assignment-dependent operation times of blocks; distances between each pair of blocks; due windows of blocks; material properties of blocks; swell factors of blocks; and slope requirements of blocks. It is formulated by mixed integer programming and solved by ILOG-CPLEX optimiser. The proposed model is validated with extensive computational experiments to improve mine production efficiency at the operational level. The model also provides an intelligent decision support tool to account for the availability and usage of equipment units for drilling, blasting and excavating stages.