675 resultados para Exponential financial models
em Queensland University of Technology - ePrints Archive
Resumo:
Commodity price modeling is normally approached in terms of structural time-series models, in which the different components (states) have a financial interpretation. The parameters of these models can be estimated using maximum likelihood. This approach results in a non-linear parameter estimation problem and thus a key issue is how to obtain reliable initial estimates. In this paper, we focus on the initial parameter estimation problem for the Schwartz-Smith two-factor model commonly used in asset valuation. We propose the use of a two-step method. The first step considers a univariate model based only on the spot price and uses a transfer function model to obtain initial estimates of the fundamental parameters. The second step uses the estimates obtained in the first step to initialize a re-parameterized state-space-innovations based estimator, which includes information related to future prices. The second step refines the estimates obtained in the first step and also gives estimates of the remaining parameters in the model. This paper is part tutorial in nature and gives an introduction to aspects of commodity price modeling and the associated parameter estimation problem.
Resumo:
QUT (Queensland University of Technology) is a leading university based in the city of Brisbane, Queensland, Australia and is a selectively research intensive university with 2,500 higher degree research students and an overall student population of 45,000 students. The transition from print to online resources is largely completed and the library now provides access to 450,000 print books, 1,000 print journals, 600,000 ebooks, 120,000 ejournals and 100,000 online videos. The ebook collection is now used three times as much as the print book collection. This paper focuses on QUT Library’s ebook strategy and the challenges of building and managing a rapidly growing collection of ebooks using a range of publishers, platforms, and business and financial models. The paper provides an account of QUT Library’s experiences in using Patron Driven Acquisition (PDA) using eBook Library (EBL); the strategic procurement of publisher and subject collections by lease and outright purchase models, the more recent transition to Evidence Based Selection (EBS) options provided by some publishers, and its piloting of etextbook models. The paper provides an in-depth analysis of each of these business models at QUT, focusing on access verses collection development, usage, cost per use, and value for money.
Resumo:
In this paper we consider the third-moment structure of a class of time series models. It is often argued that the marginal distribution of financial time series such as returns is skewed. Therefore it is of importance to know what properties a model should possess if it is to accommodate unconditional skewness. We consider modeling the unconditional mean and variance using models that respond nonlinearly or asymmetrically to shocks. We investigate the implications of these models on the third-moment structure of the marginal distribution as well as conditions under which the unconditional distribution exhibits skewness and nonzero third-order autocovariance structure. In this respect, an asymmetric or nonlinear specification of the conditional mean is found to be of greater importance than the properties of the conditional variance. Several examples are discussed and, whenever possible, explicit analytical expressions provided for all third-order moments and cross-moments. Finally, we introduce a new tool, the shock impact curve, for investigating the impact of shocks on the conditional mean squared error of return series.
Value-oriented process modeling : integrating financial perspectives into business process re-design
Resumo:
Purpose – Financial information about costs and return on investments are of key importance to strategic decision-making but also in the context of process improvement or business engineering. In this paper we propose a value-oriented approach to business process modeling based on key concepts and metrics from operations and financial management, to aid decision making in process re-design projects on the basis of process models. Design/methodology/approach – We suggest a theoretically founded extension to current process modeling approaches, and delineate a framework as well as methodical support to incorporate financial information into process re-design. We use two case studies to evaluate the suggested approach. Findings – Based on two case studies, we show that the value-oriented process modeling approach facilitates and improves managerial decision-making in the context of process re-design. Research limitations / implications – We present design work and two case studies. More research is needed to more thoroughly evaluate the presented approach in a variety of real-life process modeling settings. Practical implications – We show how our approach enables decision makers to make investment decisions in process re-design projects, and also how other decisions, for instance in the context of enterprise architecture design, can be facilitated. Originality/value – This study reports on an attempt to integrate financial considerations into the act of process modeling, in order to provide more comprehensive decision making support in process re-design projects.
Resumo:
Financial processes may possess long memory and their probability densities may display heavy tails. Many models have been developed to deal with this tail behaviour, which reflects the jumps in the sample paths. On the other hand, the presence of long memory, which contradicts the efficient market hypothesis, is still an issue for further debates. These difficulties present challenges with the problems of memory detection and modelling the co-presence of long memory and heavy tails. This PhD project aims to respond to these challenges. The first part aims to detect memory in a large number of financial time series on stock prices and exchange rates using their scaling properties. Since financial time series often exhibit stochastic trends, a common form of nonstationarity, strong trends in the data can lead to false detection of memory. We will take advantage of a technique known as multifractal detrended fluctuation analysis (MF-DFA) that can systematically eliminate trends of different orders. This method is based on the identification of scaling of the q-th-order moments and is a generalisation of the standard detrended fluctuation analysis (DFA) which uses only the second moment; that is, q = 2. We also consider the rescaled range R/S analysis and the periodogram method to detect memory in financial time series and compare their results with the MF-DFA. An interesting finding is that short memory is detected for stock prices of the American Stock Exchange (AMEX) and long memory is found present in the time series of two exchange rates, namely the French franc and the Deutsche mark. Electricity price series of the five states of Australia are also found to possess long memory. For these electricity price series, heavy tails are also pronounced in their probability densities. The second part of the thesis develops models to represent short-memory and longmemory financial processes as detected in Part I. These models take the form of continuous-time AR(∞) -type equations whose kernel is the Laplace transform of a finite Borel measure. By imposing appropriate conditions on this measure, short memory or long memory in the dynamics of the solution will result. A specific form of the models, which has a good MA(∞) -type representation, is presented for the short memory case. Parameter estimation of this type of models is performed via least squares, and the models are applied to the stock prices in the AMEX, which have been established in Part I to possess short memory. By selecting the kernel in the continuous-time AR(∞) -type equations to have the form of Riemann-Liouville fractional derivative, we obtain a fractional stochastic differential equation driven by Brownian motion. This type of equations is used to represent financial processes with long memory, whose dynamics is described by the fractional derivative in the equation. These models are estimated via quasi-likelihood, namely via a continuoustime version of the Gauss-Whittle method. The models are applied to the exchange rates and the electricity prices of Part I with the aim of confirming their possible long-range dependence established by MF-DFA. The third part of the thesis provides an application of the results established in Parts I and II to characterise and classify financial markets. We will pay attention to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Exchange (NASDAQ) and the Toronto Stock Exchange (TSX). The parameters from MF-DFA and those of the short-memory AR(∞) -type models will be employed in this classification. We propose the Fisher discriminant algorithm to find a classifier in the two and three-dimensional spaces of data sets and then provide cross-validation to verify discriminant accuracies. This classification is useful for understanding and predicting the behaviour of different processes within the same market. The fourth part of the thesis investigates the heavy-tailed behaviour of financial processes which may also possess long memory. We consider fractional stochastic differential equations driven by stable noise to model financial processes such as electricity prices. The long memory of electricity prices is represented by a fractional derivative, while the stable noise input models their non-Gaussianity via the tails of their probability density. A method using the empirical densities and MF-DFA will be provided to estimate all the parameters of the model and simulate sample paths of the equation. The method is then applied to analyse daily spot prices for five states of Australia. Comparison with the results obtained from the R/S analysis, periodogram method and MF-DFA are provided. The results from fractional SDEs agree with those from MF-DFA, which are based on multifractal scaling, while those from the periodograms, which are based on the second order, seem to underestimate the long memory dynamics of the process. This highlights the need and usefulness of fractal methods in modelling non-Gaussian financial processes with long memory.
Resumo:
Public awareness and the nature of highway construction works demand that sustainability measures are first on the development agenda. However, in the current economic climate, individual volition and enthusiasm for such high capital investments do not present as strong cases for decision making as the financial pictures of pursuing sustainability. Some stakeholders consider sustainability to be extra work that costs additional money. Though, stakeholders realised its importance in infrastructure development. They are keen to identify the available alternatives and financial implications on a lifecycle basis. Highway infrastructure development is a complex rocess which requires expertise and tools to evaluate investment options, such as environmentally sustainable features for road and highway development. Life-cycle cost analysis (LCCA) is a valuable approach for investment decision making for construction works. However, LCCA applications in highway development are still limited. Current models, for example focus on economic issues alone and do not deal with sustainability factors, which are more difficult to quantify and encapsulate in estimation modules. This paper reports the research which identifies sustainability related factors in highway construction projects, in quantitative and qualitative forms of a multi-criteria analysis. These factors are then incorporated into past and proven LCCA models to produce a new long term decision support model. The research via questionnaire, model building, analytical hierarchy processes (AHP) and case studies have identified, evaluated and then processed highway sustainability related cost elements. These cost elements need to be verified by industry before being integrated for further development of the model. Then the Australian construction industry will have a practical tool to evaluate investment decisions which provide an optimum balance between financial viability and sustainability deliverables.
Resumo:
This thesis addresses computational challenges arising from Bayesian analysis of complex real-world problems. Many of the models and algorithms designed for such analysis are ‘hybrid’ in nature, in that they are a composition of components for which their individual properties may be easily described but the performance of the model or algorithm as a whole is less well understood. The aim of this research project is to after a better understanding of the performance of hybrid models and algorithms. The goal of this thesis is to analyse the computational aspects of hybrid models and hybrid algorithms in the Bayesian context. The first objective of the research focuses on computational aspects of hybrid models, notably a continuous finite mixture of t-distributions. In the mixture model, an inference of interest is the number of components, as this may relate to both the quality of model fit to data and the computational workload. The analysis of t-mixtures using Markov chain Monte Carlo (MCMC) is described and the model is compared to the Normal case based on the goodness of fit. Through simulation studies, it is demonstrated that the t-mixture model can be more flexible and more parsimonious in terms of number of components, particularly for skewed and heavytailed data. The study also reveals important computational issues associated with the use of t-mixtures, which have not been adequately considered in the literature. The second objective of the research focuses on computational aspects of hybrid algorithms for Bayesian analysis. Two approaches will be considered: a formal comparison of the performance of a range of hybrid algorithms and a theoretical investigation of the performance of one of these algorithms in high dimensions. For the first approach, the delayed rejection algorithm, the pinball sampler, the Metropolis adjusted Langevin algorithm, and the hybrid version of the population Monte Carlo (PMC) algorithm are selected as a set of examples of hybrid algorithms. Statistical literature shows how statistical efficiency is often the only criteria for an efficient algorithm. In this thesis the algorithms are also considered and compared from a more practical perspective. This extends to the study of how individual algorithms contribute to the overall efficiency of hybrid algorithms, and highlights weaknesses that may be introduced by the combination process of these components in a single algorithm. The second approach to considering computational aspects of hybrid algorithms involves an investigation of the performance of the PMC in high dimensions. It is well known that as a model becomes more complex, computation may become increasingly difficult in real time. In particular the importance sampling based algorithms, including the PMC, are known to be unstable in high dimensions. This thesis examines the PMC algorithm in a simplified setting, a single step of the general sampling, and explores a fundamental problem that occurs in applying importance sampling to a high-dimensional problem. The precision of the computed estimate from the simplified setting is measured by the asymptotic variance of the estimate under conditions on the importance function. Additionally, the exponential growth of the asymptotic variance with the dimension is demonstrated and we illustrates that the optimal covariance matrix for the importance function can be estimated in a special case.
Resumo:
Since the 1960s, the value relevance of accounting information has been an important topic in accounting research. The value relevance research provides evidence as to whether accounting numbers relate to corporate value in a predicted manner (Beaver, 2002). Such research is not only important for investors but also provides useful insights into accounting reporting effectiveness for standard setters and other users. Both the quality of accounting standards used and the effectiveness associated with implementing these standards are fundamental prerequisites for high value relevance (Hellstrom, 2006). However, while the literature comprehensively documents the value relevance of accounting information in developed markets, little attention has been given to emerging markets where the quality of accounting standards and their enforcement are questionable. Moreover, there is currently no known research that explores the association between level of compliance with International Financial Reporting Standards (IFRS) and the value relevance of accounting information. Motivated by the lack of research on the value relevance of accounting information in emerging markets and the unique institutional setting in Kuwait, this study has three objectives. First, it investigates the extent of compliance with IFRS with respect to firms listed on the Kuwait Stock Exchange (KSE). Second, it examines the value relevance of accounting information produced by KSE-listed firms over the 1995 to 2006 period. The third objective links the first two and explores the association between the level of compliance with IFRS and the value relevance of accounting information to market participants. Since it is among the first countries to adopt IFRS, Kuwait provides an ideal setting in which to explore these objectives. In addition, the Kuwaiti accounting environment provides an interesting regulatory context in which each KSE-listed firm is required to appoint at least two external auditors from separate auditing firms. Based on the research objectives, five research questions (RQs) are addressed. RQ1 and RQ2 aim to determine the extent to which KSE-listed firms comply with IFRS and factors contributing to variations in compliance levels. These factors include firm attributes (firm age, leverage, size, profitability, liquidity), the number of brand name (Big-4) auditing firms auditing a firm’s financial statements, and industry categorization. RQ3 and RQ4 address the value relevance of IFRS-based financial statements to investors. RQ5 addresses whether the level of compliance with IFRS contributes to the value relevance of accounting information provided to investors. Based on the potential improvement in value relevance from adopting and complying with IFRS, it is predicted that the higher the level of compliance with IFRS, the greater the value relevance of book values and earnings. The research design of the study consists of two parts. First, in accordance with prior disclosure research, the level of compliance with mandatory IFRS is examined using a disclosure index. Second, the value relevance of financial statement information, specifically, earnings and book value, is examined empirically using two valuation models: price and returns models. The combined empirical evidence that results from the application of both models provides comprehensive insights into value relevance of accounting information in an emerging market setting. Consistent with expectations, the results show the average level of compliance with IFRS mandatory disclosures for all KSE-listed firms in 2006 was 72.6 percent; thus, indicating KSE-listed firms generally did not fully comply with all requirements. Significant variations in the extent of compliance are observed among firms and across accounting standards. As predicted, older, highly leveraged, larger, and profitable KSE-listed firms are more likely to comply with IFRS required disclosures. Interestingly, significant differences in the level of compliance are observed across the three possible auditor combinations of two Big-4, two non-Big 4, and mixed audit firm types. The results for the price and returns models provide evidence that earnings and book values are significant factors in the valuation of KSE-listed firms during the 1995 to 2006 period. However, the results show that the value relevance of earnings and book values decreased significantly during that period, suggesting that investors rely less on financial statements, possibly due to the increase in the available non-financial statement sources. Notwithstanding this decline, a significant association is observed between the level of compliance with IFRS and the value relevance of earnings and book value to KSE investors. The findings make several important contributions. First, they raise concerns about the effectiveness of the regulatory body that oversees compliance with IFRS in Kuwait. Second, they challenge the effectiveness of the two-auditor requirement in promoting compliance with regulations as well as the associated cost-benefit of this requirement for firms. Third, they provide the first known empirical evidence linking the level of IFRS compliance with the value relevance of financial statement information. Finally, the findings are relevant for standard setters and for their current review of KSE regulations. In particular, they highlight the importance of establishing and maintaining adequate monitoring and enforcement mechanisms to ensure compliance with accounting standards. In addition, the finding that stricter compliance with IFRS improves the value relevance of accounting information highlights the importance of full compliance with IFRS and not just mere adoption.
Resumo:
Current knowledge about the relationship between transport disadvantage and activity space size is limited to urban areas, and as a result, very little is known to date about this link in a rural context. In addition, although research has identified transport disadvantaged groups based on their size of activity spaces, these studies have, however, not empirically explained such differences and the result is often a poor identification of the problems facing disadvantaged groups. Research has shown that transport disadvantage varies over time. The static nature of analysis using the activity space concept in previous research studies has lacked the ability to identify transport disadvantage in time. Activity space is a dynamic concept; and therefore possesses a great potential in capturing temporal variations in behaviour and access opportunities. This research derives measures of the size and fullness of activity spaces for 157 individuals for weekdays, weekends, and for a week using weekly activity-travel diary data from three case study areas located in rural Northern Ireland. Four focus groups were also conducted in order to triangulate the quantitative findings and to explain the differences between different socio-spatial groups. The findings of this research show that despite having a smaller sized activity space, individuals were not disadvantaged because they were able to access their required activities locally. Car-ownership was found to be an important life line in rural areas. Temporal disaggregation of the data reveals that this is true only on weekends due to a lack of public transport services. In addition, despite activity spaces being at a similar size, the fullness of activity spaces of low-income individuals was found to be significantly lower compared to their high-income counterparts. Focus group data shows that financial constraint, poor connections both between public transport services and between transport routes and opportunities forced individuals to participate in activities located along the main transport corridors.
Resumo:
A stage model for knowledge management systems in policing financial crime is developed in this paper. Stages of growth models enable identification of organizational maturity and direction. Information technology to support knowledge work of police officers is improving. For example, new information systems supporting police investigations are evolving. Police investigation is an information-rich and knowledge-intensive practice. Its success depends on turning information into evidence. This paper presents an organizing framework for knowledge management systems in policing financial crime. Future case studies will empirically have to illustrate and validate the stage hypothesis developed in this paper.
Resumo:
We study Krylov subspace methods for approximating the matrix-function vector product φ(tA)b where φ(z) = [exp(z) - 1]/z. This product arises in the numerical integration of large stiff systems of differential equations by the Exponential Euler Method, where A is the Jacobian matrix of the system. Recently, this method has found application in the simulation of transport phenomena in porous media within mathematical models of wood drying and groundwater flow. We develop an a posteriori upper bound on the Krylov subspace approximation error and provide a new interpretation of a previously published error estimate. This leads to an alternative Krylov approximation to φ(tA)b, the so-called Harmonic Ritz approximant, which we find does not exhibit oscillatory behaviour of the residual error.