394 resultados para Event-related Fmri

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was designed to identify the neural networks underlying automatic auditory deviance detection in 10 healthy subjects using functional magnetic resonance imaging. We measured blood oxygenation level-dependent contrasts derived from the comparison of blocks of stimuli presented as a series of standard tones (50 ms duration) alone versus blocks that contained rare duration-deviant tones (100 ms) that were interspersed among a series of frequent standard tones while subjects were watching a silent movie. Possible effects of scanner noise were assessed by a “no tone” condition. In line with previous positron emission tomography and EEG source modeling studies, we found temporal lobe and prefrontal cortical activation that was associated with auditory duration mismatch processing. Data were also analyzed employing an event-related hemodynamic response model, which confirmed activation in response to duration-deviant tones bilaterally in the superior temporal gyrus and prefrontally in the right inferior and middle frontal gyri. In line with previous electrophysiological reports, mismatch activation of these brain regions was significantly correlated with age. These findings suggest a close relationship of the event-related hemodynamic response pattern with the corresponding electrophysiological activity underlying the event-related “mismatch negativity” potential, a putative measure of auditory sensory memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the neural correlates of semantic priming by using event-related fMRI to record blood oxygen level dependent (BOLD) responses while participants performed speeded lexical decisions (word/nonword) on visually presented related versus unrelated prime-target pairs. A long stimulus onset asynchrony of 1000 ms was employed, which allowed for increased controlled processing and selective frequency-based ambiguity priming. Conditions included an ambiguous word prime (e.g. bank) and a target related to its dominant (e.g. money) or subordinate meaning (e.g. river). Compared to an unrelated condition, primed dominant targets were associated with increased activity in the LIFG, the right anterior cingulate and superior temporal gyrus, suggesting postlexical semantic integrative mechanisms, while increased right supramarginal activity for the unrelated condition was consistent with expectancy based priming. Subordinate targets were not primed and were associated with reduced activity primarily in occipitotemporal regions associated with word recognition, which may be consistent with frequency-based meaning suppression. These findings provide new insights into the neural substrates of semantic priming and the functional-anatomic correlates of lexical ambiguity suppression mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naming an object entails a number of processing stages, including retrieval of a target lexical concept and encoding of its phonological word form. We investigated these stages using the picture-word interference task in an fMRI experiment. Participants named target pictures in the presence of auditorily presented semantically related, phonologically related, or unrelated distractor words or in isolation. We observed BOLD signal changes in left-hemisphere regions associated with lexical-conceptual and phonological processing, including the midto-posterior lateral temporal cortex. However, these BOLD responses manifested as signal reductions for all distractor conditions relative to naming alone. Compared with unrelated words, phonologically related distractors showed further signal reductions, whereas only the pars orbitalis of the left inferior frontal cortex showed a selective reduction in response in the semantic condition. We interpret these findings as indicating that the word forms of lexical competitors are phonologically encoded and that competition during lexical selection is reduced by phonologically related distractors. Since the extended nature of auditory presentation requires a large portion of a word to be presented before its meaning is accessed, we attribute the BOLD signal reductions observed for semantically related and unrelated words to lateral inhibition mechanisms engaged after target name selection has occurred, as has been proposed in some production models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the picture-word interference task, naming responses are facilitated when a distractor word is orthographically and phonologically related to the depicted object as compared to an unrelated word. We used event-related functional magnetic resonance imaging (fMRI) to investigate the cerebral hemodynamic responses associated with this priming effect. Serial (or independent-stage) and interactive models of word production that explicitly account for picture-word interference effects assume that the locus of the effect is at the level of retrieving phonological codes, a role attributed recently to the left posterior superior temporal cortex (Wernicke's area). This assumption was tested by randomly presenting participants with trials from orthographically related and unrelated distractor conditions and acquiring image volumes coincident with the estimated peak hemodynamic response for each trial. Overt naming responses occurred in the absence of scanner noise, allowing reaction time data to be recorded. Analysis of this data confirmed the priming effect. Analysis of the fMRI data revealed blood oxygen level-dependent signal decreases in Wernicke's area and the right anterior temporal cortex, whereas signal increases were observed in the anterior cingulate, the right orbitomedial prefrontal, somatosensory, and inferior parietal cortices, and the occipital lobe. The results are interpreted as supporting the locus for the facilitation effect as assumed by both classes of theoretical model of word production. In addition, our results raise the possibilities that, counterintuitively, picture-word interference might be increased by the presentation of orthographically related distractors, due to competition introduced by activation of phonologically related word forms, and that this competition requires inhibitory processes to be resolved. The priming effect is therefore viewed as being sufficient to offset the increased interference. We conclude that information from functional imaging studies might be useful for constraining theoretical models of word production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used event-related functional magnetic resonance imaging (fMRI) to investigate neural responses associated with the semantic interference (SI) effect in the picture-word task. Independent stage models of word production assume that the locus of the SI effect is at the conceptual processing level (Levelt et al. [1999]: Behav Brain Sci 22:1-75), whereas interactive models postulate that it occurs at phonological retrieval (Starreveld and La Heij [1996]: J Exp Psychol Learn Mem Cogn 22:896-918). In both types of model resolution of the SI effect occurs as a result of competitive, spreading activation without the involvement of inhibitory links. These assumptions were tested by randomly presenting participants with trials from semantically-related and lexical control distractor conditions and acquiring image volumes coincident with the estimated peak hemodynamic response for each trial. Overt vocalization of picture names occurred in the absence of scanner noise, allowing reaction time (RT) data to be collected. Analysis of the RT data confirmed the SI effect. Regions showing differential hemodynamic responses during the SI effect included the left mid section of the middle temporal gyrus, left posterior superior temporal gyrus, left anterior cingulate cortex, and bilateral orbitomedial prefrontal cortex. Additional responses were observed in the frontal eye fields, left inferior parietal lobule, and right anterior temporal and occipital cortex. The results are interpreted as indirectly supporting interactive models that allow spreading activation between both conceptual processing and phonological retrieval levels of word production. In addition, the data confirm that selective attention/response suppression has a role in resolving the SI effect similar to the way in which Stroop interference is resolved. We conclude that neuroimaging studies can provide information about the neuroanatomical organization of the lexical system that may prove useful for constraining theoretical models of word production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibitory control deficits are well documented in schizophrenia, supported by impairment in an established measure of response inhibition, the stop-signal reaction time (SSRT). We investigated the neural basis of this impairment by comparing schizophrenia patients and controls matched for age, sex and education on behavioural, functional magnetic resonance imaging (fMRI) and event-related potential (ERP) indices of stop-signal task performance. Compared to controls, patients exhibited slower SSRT and reduced right inferior frontal gyrus (rIFG) activation, but rIFG activation correlated with SSRT in both groups. Go stimulus and stop-signal ERP components (N1/P3) were smaller in patients, but the peak latencies of stop-signal N1 and P3 were also delayed in patients, indicating impairment early in stop-signal processing. Additionally, response-locked lateralised readiness potentials indicated response preparation was prolonged in patients. An inability to engage rIFG may predicate slowed inhibition in patients, however multiple spatiotemporal irregularities in the networks underpinning stop-signal task performance may contribute to this deficit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semantic priming occurs when a subject is faster in recognising a target word when it is preceded by a related word compared to an unrelated word. The effect is attributed to automatic or controlled processing mechanisms elicited by short or long interstimulus intervals (ISIs) between primes and targets. We employed event-related functional magnetic resonance imaging (fMRI) to investigate blood oxygen level dependent (BOLD) responses associated with automatic semantic priming using an experimental design identical to that used in standard behavioural priming tasks. Prime-target semantic strength was manipulated by using lexical ambiguity primes (e.g., bank) and target words related to dominant or subordinate meaning of the ambiguity. Subjects made speeded lexical decisions (word/nonword) on dominant related, subordinate related, and unrelated word pairs presented randomly with a short ISI. The major finding was a pattern of reduced activity in middle temporal and inferior prefrontal regions for dominant versus unrelated and subordinate versus unrelated comparisons, respectively. These findings are consistent with both a dual process model of semantic priming and recent repetition priming data that suggest that reductions in BOLD responses represent neural priming associated with automatic semantic activation and implicate the left middle temporal cortex and inferior prefrontal cortex in more automatic aspects of semantic processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ignoring an object slows subsequent naming responses to it, a phenomenon known as negative priming (NP). A central issue in NP research concerns the level of representation at which the effect occurs. As object naming is typically considered to involve access to abstract semantic representations, Tipper 1985 proposed that the NP effect occurred at this level of processing, and other researchers supported this proposal by demonstrating a similar result with categorically related objects (e.g., Allport et al., 1985; Murray, 1995), an effect referred to as semantic NP. However, objects within categories share more physical or structural features than objects from different categories. Consequently, the NP effect observed with categorically related objects might occur at a structural rather than semantic level of representation. We used event related fMRI interleaving overt object naming and image acquisition to demonstrate for the first time that the semantic NP effect activates the left posterior-mid fusiform and insular-opercular cortices. Moreover, both naming latencies and left posterior-mid fusiform cortex responses were influenced by the structural similarity of prime-probe object pairings in the categorically related condition, increasing with the number of shared features. None of the cerebral regions activated in a previous fMRI study of the identity NP effect (de Zubicaray et al., 2006) showed similar activation during semantic NP, including the left anterolateral temporal cortex, a region considered critical for semantic processing. The results suggest that the identity and semantic NP effects differ with respect to their neural mechanisms, and the label "semantic NP" might be a misnomer. We conclude that the effect is most likely the result of competition between structurally similar category exemplars that determines the efficiency of object name retrieval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have reported that patients with schizophrenia demonstrate impaired performance during working memory (WM) tasks. The current study aimed to determine whether WM impairments in schizophrenia are accompanied by reduced slow wave (SW) activity during on-line maintenance of mnemonic information. Event-related potentials were obtained from patients with schizophrenia and well controls as they performed a visuospatial delayed response task. On 50% of trials, a distractor stimulus was introduced during the delay. Compared with controls, patients with schizophrenia produced less SW memory negativity, particularly over the right hemisphere, together with reduced frontal enhancement of SW memory negativity in response to distraction. The results indicate that patients with schizophrenia generate less maintenance phase neuronal activity during WM performance, especially under conditions of distraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we set out to dissociate the developmental time course of automatic symbolic number processing and cognitive control functions in grade 1-3 British primary school children. Event-related potential (ERP) and behavioral data were collected in a physical size discrimination numerical Stroop task. Task-irrelevant numerical information was processed automatically already in grade 1. Weakening interference and strengthening facilitation indicated the parallel development of general cognitive control and automatic number processing. Relationships among ERP and behavioral effects suggest that control functions play a larger role in younger children and that automaticity of number processing increases from grade 1 to 3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. MATERIALS AND METHODS Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s2 ) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. RESULTS The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 +/- 0.88 sec). CONCLUSION The hemodynamic contribution to DfMRI may increase with the use of block designs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a social species in a constantly changing environment, humans rely heavily on the informational richness and communicative capacity of the face. Thus, understanding how the brain processes information about faces in real-time is of paramount importance. The N170 is a high temporal resolution electrophysiological index of the brain's early response to visual stimuli that is reliably elicited in carefully controlled laboratory-based studies. Although the N170 has often been reported to be of greatest amplitude to faces, there has been debate regarding whether this effect might be an artifact of certain aspects of the controlled experimental stimulation schedules and materials. To investigate whether the N170 can be identified in more realistic conditions with highly variable and cluttered visual images and accompanying auditory stimuli we recorded EEG 'in the wild', while participants watched pop videos. Scene-cuts to faces generated a clear N170 response, and this was larger than the N170 to transitions where the videos cut to non-face stimuli. Within participants, wild-type face N170 amplitudes were moderately correlated to those observed in a typical laboratory experiment. Thus, we demonstrate that the face N170 is a robust and ecologically valid phenomenon and not an artifact arising as an unintended consequence of some property of the more typical laboratory paradigm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cued recall and item recognition are considered the standard episodic memory retrieval tasks. However, only the neural correlates of the latter have been studied in detail with fMRI. Using an event-related fMRI experimental design that permits spoken responses, we tested hypotheses from an auto-associative model of cued recall and item recognition [Chappell, M., & Humphreys, M. S. (1994). An auto-associative neural network for sparse representations: Analysis and application to models of recognition and cued recall. Psychological Review, 101, 103-128]. In brief, the model assumes that cues elicit a network of phonological short term memory (STM) and semantic long term memory (LTM) representations distributed throughout the neocortex as patterns of sparse activations. This information is transferred to the hippocampus which converges upon the item closest to a stored pattern and outputs a response. Word pairs were learned from a study list, with one member of the pair serving as the cue at test. Unstudied words were also intermingled at test in order to provide an analogue of yes/no recognition tasks. Compared to incorrectly rejected studied items (misses) and correctly rejected (CR) unstudied items, correctly recalled items (hits) elicited increased responses in the left hippocampus and neocortical regions including the left inferior prefrontal cortex (LIPC), left mid lateral temporal cortex and inferior parietal cortex, consistent with predictions from the model. This network was very similar to that observed in yes/no recognition studies, supporting proposals that cued recall and item recognition involve common rather than separate mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used event-related fMRI to investigate the neural correlates of encoding strength and word frequency effects in recognition memory. At test, participants made Old/New decisions to intermixed low (LF) and high frequency (HF) words that had been presented once or twice at study and to new, unstudied words. The Old/New effect for all hits vs. correctly rejected unstudied words was associated with differential activity in multiple cortical regions, including the anterior medial temporal lobe (MTL), hippocampus, left lateral parietal cortex and anterior left inferior prefrontal cortex (LIPC). Items repeated at study had superior hit rates (HR) compared to items presented once and were associated with reduced activity in the right anterior MTL. By contrast, other regions that had shown conventional Old/New effects did not demonstrate modulation according to memory strength. A mirror effect for word frequency was demonstrated, with the LF word HR advantage associated with increased activity in the left lateral temporal cortex. However, none of the regions that had demonstrated Old/New item retrieval effects showed modulation according to word frequency. These findings are interpreted as supporting single-process memory models proposing a unitary strength-like memory signal and models attributing the LF word HR advantage to the greater lexico-semantic context-noise associated with HF words due to their being experienced in many pre-experimental contexts.