239 resultados para Electrode materials

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A battery electrode for a lithium ion battery comprising an elec. conductive substrate having an electrode layer applied thereto, characterized in that the electrode layer includes an org. material having high alky., or an org. material which can be dissolved in org. solvents, or an org. material having an imide group(s) and aminoacetal group(s), or an org. material that chelates with or bonds with a metal substrate or that chelates with or bonds with an active material in the electrode layer. The org. material may be guanidine carbonate. [on SciFinder(R)]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemically synthesized AgTCNQ exists in two forms that differ in their morphologies (needles and microcrystals) and colors (red and blue). It is now shown that both forms exhibit essentially indistinguishable X-ray diffraction, spectroscopic, and thermochemical data, implying that they are not separate phases, as implied in some literature. Electrochemical reduction of TCNQ((MeCN)) in the presence of Ag+((MeCN)) generates both red and blue AgTCNQ. On glassy carbon, platinum, or indium tin oxide electrodes and at relatively positive deposition potentials, slow growth of high aspect ratio, red needle AgTCNQ crystals occurs. After longer times and at more negative deposition potentials, blue microcrystalline AgTCNQ thin films are favored. Blue AgTCNQ is postulated to be generated via reduction of a Ag+\[(TCNQ(center dot-))(TCNQ)]((MeCN)) intermediate. At even more negative potentials, Ag-(metal) formation inhibits further growth of AgTCNQ. On a gold electrode, Ag-(metal)) deposition occurs at more positive potentials than on the other electrode materials examined. However, surface plasmon resonance data indicate (hat a small potential region is available between the stripping of Ag-(metal)) and the oxidation of TCNQ(center dot-)(MeCN) back to TCNQ(MeCN) where AgTCNQ may form. AgTCNQ in both the red and blue forms also can be prepared electrochemically on a TCNQ((s)) modified electrode in -0.1 M AgNO3(aq) where deposition of Ag(m,,,I) onto the TCNQ((s)) crystals allows a charge transfer process to occur. However, the morphology formed in this solid-solid phase transformation is more difficult to control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Asymmetrical electrical boundary conditions in (001)-oriented Pb(Zr 0.2TiO0.8)O3 (PZT) epitaxial ultrathin ferroelectric films are exploited to control surface photochemical reactivity determined by the sign of the surface polarization charge. It is shown that the preferential orientation of polarization in the as-grown PZT layer can be manipulated by choosing an appropriate type of bottom electrode material. PZT films deposited on the SrRuO3 electrodes exhibit preferential upward polarization (C) whilst the same films grown on the (La,Sr)CoO 3-electrodes are polarized downward (C-). Photochemical activity of the PZT surfaces with different surface polarization charges has been tested by studying deposition of silver nanoparticles from AgNO3 solution under UV irradiation. PZT surfaces with preferential C orientation possess a more active surface for metal reduction than their C- counterparts, evidenced by large differences in the concentration of deposited silver nanoparticles. This effect is attributed to band bending at the bottom interface which varies depending on the difference in work functions of PZT and electrode materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Developing nano/micro-structures which can effectively upgrade the intriguing properties of electrode materials for energy storage devices is always a key research topic. Ultrathin nanosheets were proved to be one of the potential nanostructures due to their high specific surface area, good active contact areas and porous channels. Herein, we report a unique hierarchical micro-spherical morphology of well-stacked and completely miscible molybdenum disulfide (MoS2) nanosheets and graphene sheets, were successfully synthesized via a simple and industrial scale spray-drying technique to take the advantages of both MoS2 and graphene in terms of their high practical capacity values and high electronic conductivity, respectively. Computational studies were performed to understand the interfacial behaviour of MoS2 and graphene, which proves high stability of the composite with high interfacial binding energy (−2.02 eV) among them. Further, the lithium and sodium storage properties have been tested and reveal excellent cyclic stability over 250 and 500 cycles, respectively, with the highest initial capacity values of 1300 mAh g−1 and 640 mAh g−1 at 0.1 A g−1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

According to some embodiments, the present invention provides a novel photovoltaic solar cell system from photovoltaic modules that are vertically arrayed in a stack format using thin film semiconductors selected from among org. and inorg. thin film semiconductors. The stack cells may be cells that are produced in a planar manner, then vertically oriented in an angular form, also termed herein tilted, to maximize the light capturing aspects. The use of a stack configuration system as described herein allows for the use of a variety of electrode materials, such as transparent materials or semitransparent metals. Light concn. can be achieved by using fresnel lens, parabolic mirrors or derivs. of such structures. The light capturing can be controlled by being reflected back and forth in the photovoltaic system until significant quantities of the resonant light is absorbed. Light that passes to the end and can be reflected back through the device by beveling or capping the end of the device with a different refractive index material, or alternatively using a reflective surface. The contacting between stacked cells can be done in series or parallel. According to some embodiments, the present invention uses a concentrator architecture where the light is channeled into the cells that contain thermal fluid channels (using a transparent fluid such as water) to absorb and hence reduce the thermal energy generation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graphene and carbon nanotubes (CNTs) are attractive electrode materials for supercapacitors. However, challenges such as the substrate-limited growth of CNTs, nanotube bundling in liquid electrolytes, under-utilized basal planes, and stacking of graphene sheets have so far impeded their widespread application. Here we present a hybrid structure formed by the direct growth of CNTs onto vertical graphene nanosheets (VGNS). VGNS are fabricated by a green plasma-assisted method to break down and reconstruct a natural precursor into an ordered graphitic structure. The synergistic combination of CNTs and VGNS overcomes the challenges intrinsic to both materials. The resulting VGNS/CNTs hybrids show a high specific capacitance with good cycling stability. The charge storage is based mainly on the non-Faradaic mechanism. In addition, a series of optimization experiments were conducted to reveal the critical factors that are required to achieve the demonstrated high supercapacitor performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an electrochemical exfoliation method to produce controlled thickness graphene flakes by ultrasound assistance. Bilayer graphene flakes are dominant in the final product by using sonication during the electrochemical exfoliation process, while without sonication the product contains a larger percentage of four-layer graphene flakes. Graphene sheets prepared by using the two procedures are processed into films to measure their respective sheet resistance and optical transmittance. Solid-state electrolyte supercapacitors are made using the two types of graphene films. Our study reveals that films with a higher content of multilayer graphene flakes are more conductive, and their resistance is more easily reduced by thermal annealing, making them suitable as transparent conducting films. The film with higher content of bilayer graphene flakes shows instead higher capacitance when used as electrode in a supercapacitor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A controlled layer of multi-wall carbon nanotubes (MWCNT) was grown directly on top of fluorine-doped tin oxide (FTO) glass electrodes as a surface modifier for improving the performance of polymer solar cells. By using low-temperature chemical vapor deposition with short synthesis times, very short MWCNTs were grown, these uniformly decorating the FTO surface. The chemical vapor deposition parameters were carefully refined to balance the tube size and density, while minimizing the decrease in conductivity and light harvesting of the electrode. As created FTO/CNT electrodes were applied to bulk-heterojunction polymer solar cells, both in direct and inverted architecture. Thanks to the inclusion of MWCNT and the consequent nano-structuring of the electrode surface, we observe an increase in external quantum efficiency in the wavelength range from 550 to 650 nm. Overall, polymer solar cells realized with these FTO/CNT electrodes attain power conversion efficiency higher than 2%, outclassing reference cells based on standard FTO electrodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemically reversible solid−solid phase transformation of a TCNQ-modified glassy carbon, indium tin oxide, or metal electrode into Co\[TCNQ]2(H2O)2 material in the presence of Co2+(aq) containing electrolytes has been induced and monitored electrochemically. Voltammetric data reveal that the TCNQ/Co\[TCNQ]2(H2O)2 interconversion process is independent of electrode material and identity of cobalt electrolyte anion. However, a marked dependence on electrolyte concentration, scan rate, and method of electrode modification (drop casting or mechanical attachment) is found. Cyclic voltammetric and double potential step chronoamperometric measurements confirm that formation of Co\[TCNQ]2(H2O)2 occurs through a rate-determining nucleation and growth process that initially involves incorporation of Co2+(aq) ions into the reduced TCNQ crystal lattice at the TCNQ|electrode|electrolyte interface. Similarly, the reverse (oxidation) process, which involves transformation of solid Co\[TCNQ]2(H2O)2 back to parent TCNQ crystals, also is controlled by nucleation−growth kinetics. The overall chemically reversible process that represents this transformation is described by the reaction:  2TCNQ0(s) + 2e- + Co2+(aq) + 2H2O \[Co(TCNQ)2(H2O)2](s). Ex situ SEM images illustrated that this reversible TCNQ/Co\[TCNQ]2(H2O)2 conversion process is accompanied by drastic size and morphology changes in the parent solid TCNQ. In addition, different sizes of needle-shaped nanorod/nanowire crystals of Co\[TCNQ]2(H2O)2 are formed depending on the method of surface immobilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charging and trapping of macroparticles in the near-electrode region of fluorocarbon etching plasmas with negative ions is considered. The equilibrium charge and forces on particles are computed as a function of the local position in the plasma presheath and sheath. The ionic composition of the plasma corresponds to the etching experiments in 2.45 GHz surface-wave sustained and 13.56 MHz inductively coupled C4F8+Ar plasmas. It is shown that despite negligible negative ion currents collected by the particles, the negative fluorine ions affect the charging and trapping of particulates through modification of the sheath/presheath structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High efficiency organic photovoltaic cells discussed in literature are normally restricted to devices fabricated on glass substrates. This is a consequence of the extreme brittleness and inflexibility of the commonly used transparent conductive oxide electrode, indium tin oxide (ITO). This shortcoming of ITO along with other concerns such as increasing scarcity of indium, migration of indium to organic layer, etc. makes it imperative to move away from ITO. Here we demonstrate a highly flexible Ag electrode that possesses low sheet resistances even in ultra-thin layers. It retains its conductivity under severe bending stresses where ITO fails completely. A P3HT:PCBM blend organic solar cell fabricated on this highly flexible electrode gives an efficiency of 2.3%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lithium-ion exchange rate capability of various commercial graphite materials are evaluated using galvanostatic charge/discharge cycling in a half-cell configuration over a wide range of C-rates (0.1 similar to 60C). The results confirm that graphite is capable of de-intercalating stored charge at high rates, but has a poor intercalating rate capability. Decreasing the graphite coating thickness leads to a limited rate performance improvement of the electrode. Reducing the graphite particle size shows enhanced C-rate capability but with increased irreversible capacity loss (ICL). It is demonstrated that the rate of intercalation of lithium-ions into the graphite is significantly limited compared with the corresponding rate of de-intercalation at high C-rates. For the successful utilisation of commercially available conventional graphite as a negative electrode in a lithium-ion capacitor (LIC), its intercalation rate capability needs to be improved or oversized to accommodate high charge rates.