164 resultados para Electric lines

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of investment in the electric power has been the subject of intensive research for many years. The efficient generation and distribution of electrical energy is a difficult task involving the operation of a complex network of facilities, often located over very large geographical regions. Electric power utilities have made use of an enormous range of mathematical models. Some models address time spans which last for a fraction of a second, such as those that deal with lightning strikes on transmission lines while at the other end of the scale there are models which address time horizons consisting of ten or twenty years; these usually involve long range planning issues. This thesis addresses the optimal long term capacity expansion of an interconnected power system. The aim of this study has been to derive a new, long term planning model which recognises the regional differences which exist for energy demand and which are present in the construction and operation of power plant and transmission line equipment. Perhaps the most innovative feature of the new model is the direct inclusion of regional energy demand curves in the nonlinear form. This results in a nonlinear capacity expansion model. After review of the relevant literature, the thesis first develops a model for the optimal operation of a power grid. This model directly incorporates regional demand curves. The model is a nonlinear programming problem containing both integer and continuous variables. A solution algorithm is developed which is based upon a resource decomposition scheme that separates the integer variables from the continuous ones. The decompostion of the operating problem leads to an interactive scheme which employs a mixed integer programming problem, known as the master, to generate trial operating configurations. The optimum operating conditions of each trial configuration is found using a smooth nonlinear programming model. The dual vector recovered from this model is subsequently used by the master to generate the next trial configuration. The solution algorithm progresses until lower and upper bounds converge. A range of numerical experiments are conducted and these experiments are included in the discussion. Using the operating model as a basis, a regional capacity expansion model is then developed. It determines the type, location and capacity of additional power plants and transmission lines, which are required to meet predicted electicity demands. A generalised resource decompostion scheme, similar to that used to solve the operating problem, is employed. The solution algorithm is used to solve a range of test problems and the results of these numerical experiments are reported. Finally, the expansion problem is applied to the Queensland electricity grid in Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of investment in the electric power has been the subject of intensive research for many years. The efficient generation and distribution of electrical energy is a difficult task involving the operation of a complex network of facilities, often located over very large geographical regions. Electric power utilities have made use of an enormous range of mathematical models. Some models address time spans which last for a fraction of a second, such as those that deal with lightning strikes on transmission lines while at the other end of the scale there are models which address time horizons consisting of ten or twenty years; these usually involve long range planning issues. This thesis addresses the optimal long term capacity expansion of an interconnected power system. The aim of this study has been to derive a new, long term planning model which recognises the regional differences which exist for energy demand and which are present in the construction and operation of power plant and transmission line equipment. Perhaps the most innovative feature of the new model is the direct inclusion of regional energy demand curves in the nonlinear form. This results in a nonlinear capacity expansion model. After review of the relevant literature, the thesis first develops a model for the optimal operation of a power grid. This model directly incorporates regional demand curves. The model is a nonlinear programming problem containing both integer and continuous variables. A solution algorithm is developed which is based upon a resource decomposition scheme that separates the integer variables from the continuous ones. The decompostion of the operating problem leads to an interactive scheme which employs a mixed integer programming problem, known as the master, to generate trial operating configurations. The optimum operating conditions of each trial configuration is found using a smooth nonlinear programming model. The dual vector recovered from this model is subsequently used by the master to generate the next trial configuration. The solution algorithm progresses until lower and upper bounds converge. A range of numerical experiments are conducted and these experiments are included in the discussion. Using the operating model as a basis, a regional capacity expansion model is then developed. It determines the type, location and capacity of additional power plants and transmission lines, which are required to meet predicted electicity demands. A generalised resource decompostion scheme, similar to that used to solve the operating problem, is employed. The solution algorithm is used to solve a range of test problems and the results of these numerical experiments are reported. Finally, the expansion problem is applied to the Queensland electricity grid in Australia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Positive and negative small ions, aerosol ion and number concentration and dc electric fields were monitored at an overhead high-voltage power line site. We show that the emission of corona ions was not spatially uniform along the lines and occurred from discrete components such as a particular set of spacers. Maximum ion concentrations and atmospheric dc electric fields were observed at a point 20 m downwind of the lines. It was estimated that less than 7% of the total number of aerosol particles was charged. The electrical parameters decreased steadily with further downwind distance but remained significantly higher than background.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the results of experiments made in the vicinity of EHV overhead lines to investigate sources of clouds of charged particles using simultaneously-recording arrays of electric field meters to measure direct electric fields produced under ion clouds. E-field measurements, made at one metre above ground level, are correlated with wind speed and direction, and with measurements from ionisation counters and audible corona effects to identify possible positions of sources of corona on adjacent power lines. Measurements made in dry conditions on EHV lines in flat remote locations with no adjacent buildings or large vegetation indicate the presence of discrete ion sources associated with high stress points on some types of line hardware such as connectors and conductor spacers. Faulty line components such as insulators and line fittings are also found to be a possible source of ion clouds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

South Africa has an electrical transmission grid of over 25 000 km of overhead power lines with voltages of 132 kV to 765 kV. The grid has been largely designed and built by the power utility, Eskom. This book embodies the planning philosophies, design principles and construction practices of Eskom. It is the culmination of decades of thought, study, research and the practical experience of many overhead power line engineers and researchers. The book covers the main aspects of overhead power line design and construction, from electrical first principles, system planning, insulation co-ordination (including live line working), mechanical design through to environmental impact management and power line communications. The content emphasises the need for close interaction between all technical disciplines involved and the importance of optimising designs for economy and performance. Additional challenges in South Africa are the relatively high altitude of the interior plateau (1 000 m to 1 700 m above sea level), severe lightning in some areas and long transmission distances. The book explains how these factors are accommodated in modern designs. Other advanced work covered includes the use and understanding of polymeric insulators, the judicious reduction of phase-to-phase spacings and the adoption of guyed structures.

Relevância:

20.00% 20.00%

Publicador: