290 resultados para Effective rainfall
em Queensland University of Technology - ePrints Archive
Resumo:
The Upper Roper River is one of the Australia’s unique tropical rivers which have been largely untouched by development. The Upper Roper River catchment comprises the sub-catchments of the Waterhouse River and Roper Creek, the two tributaries of the Roper River. There is a complex geological setting with different aquifer types. In this seasonal system, close interaction between surface water and groundwater contributes to both streamflow and sustaining ecosystems. The interaction is highly variable between seasons. A conceptual hydrogeological model was developed to investigate the different hydrological processes and geochemical parameters, and determine the baseline characteristics of water resources of this pristine catchment. In the catchment, long term average rainfall is around 850 mm and is summer dominant which significantly influences the total hydrological system. The difference between seasons is pronounced, with high rainfall up to 600 mm/month in the wet season, and negligible rainfall in the dry season. Canopy interception significantly reduces the amount of effective rainfall because of the native vegetation cover in the pristine catchment. Evaporation exceeds rainfall the majority of the year. Due to elevated evaporation and high temperature in the tropics, at least 600 mm of annual rainfall is required to generate potential recharge. Analysis of 120 years of rainfall data trend helped define “wet” and “dry periods”: decreasing trend corresponds to dry periods, and increasing trend to wet periods. The period from 1900 to 1970 was considered as Dry period 1, when there were years with no effective rainfall, and if there was, the intensity of rainfall was around 300 mm. The period 1970 – 1985 was identified as the Wet period 2, when positive effective rainfall occurred in almost every year, and the intensity reached up to 700 mm. The period 1985 – 1995 was the Dry period 2, with similar characteristics as Dry period 1. Finally, the last decade was the Wet period 2, with effective rainfall intensity up to 800 mm. This variability in rainfall over decades increased/decreased recharge and discharge, improving/reducing surface water and groundwater quantity and quality in different wet and dry periods. The stream discharge follows the rainfall pattern. In the wet season, the aquifer is replenished, groundwater levels and groundwater discharge are high, and surface runoff is the dominant component of streamflow. Waterhouse River contributes two thirds and Roper Creek one third to Roper River flow. As the dry season progresses, surface runoff depletes, and groundwater becomes the main component of stream flow. Flow in Waterhouse River is negligible, the Roper Creek dries up, but the Roper River maintains its flow throughout the year. This is due to the groundwater and spring discharge from the highly permeable Tindall Limestone and tufa aquifers. Rainfall seasonality and lithology of both the catchment and aquifers are shown to influence water chemistry. In the wet season, dilution of water bodies by rainwater is the main process. In the dry season, when groundwater provides baseflow to the streams, their chemical composition reflects lithology of the aquifers, in particular the karstic areas. Water chemistry distinguishes four types of aquifer materials described as alluvium, sandstone, limestone and tufa. Surface water in the headwaters of the Waterhouse River, the Roper Creek and their tributaries are freshwater, and reflect the alluvium and sandstone aquifers. At and downstream of the confluence of the Roper River, river water chemistry indicates the influence of rainfall dilution in the wet season, and the signature of the Tindall Limestone and tufa aquifers in the dry. Rainbow Spring on the Waterhouse River and Bitter Spring on the Little Roper River (known as Roper Creek at the headwaters) discharge from the Tindall Limestone. Botanic Walk Spring and Fig Tree Spring discharge into the Roper River from tufa. The source of water was defined based on water chemical composition of the springs, surface and groundwater. The mechanisms controlling surface water chemistry were examined to define the dominance of precipitation, evaporation or rock weathering on the water chemical composition. Simple water balance models for the catchment have been developed. The important aspects to be considered in water resource planning of this total system are the naturally high salinity in the region, especially the downstream sections, and how unpredictable climate variation may impact on the natural seasonal variability of water volumes and surface-subsurface interaction.
Resumo:
The current approach for protecting the receiving water environment from urban stormwater pollution is the adoption of structural measures commonly referred to as Water Sensitive Urban Design (WSUD). The treatment efficiency of WSUD measures closely depends on the design of the specific treatment units. As stormwater quality can be influenced by rainfall characteristics, the selection of appropriate rainfall events for treatment design is essential to ensure the effectiveness of WSUD systems. Based on extensive field investigation of four urban residential catchments and computer modelling, this paper details a technically robust approach for the selection of rainfall events for stormwater treatment design using a three-component model. The modelling outcomes indicate that selecting smaller average recurrence interval (ARI) events with high intensity-short duration as the threshold for the treatment system design is the most feasible since these events cumulatively generate a major portion of the annual pollutant load compared to the other types of rainfall events, despite producing a relatively smaller runoff volume. This implies that designs based on small and more frequent rainfall events rather than larger rainfall events would be appropriate in the context of efficiency in treatment performance, cost-effectiveness and possible savings in land area needed.
Resumo:
The current approach for protecting the receiving water environment from urban stormwater pollution is the adoption of structural measures commonly referred to as Water Sensitive Urban Design (WSUD). The treatment efficiency of WSUD measures closely depends on the design of the specific treatment units. As stormwater quality is influenced by rainfall characteristics, the selection of appropriate rainfall events for treatment design is essential to ensure the effectiveness of WSUD systems. Based on extensive field investigations in four urban residential catchments based at Gold Coast, Australia, and computer modelling, this paper details a technically robust approach for the selection of rainfall events for stormwater treatment design using a three-component model. The modelling results confirmed that high intensity-short duration events produce 58.0% of TS load while they only generated 29.1% of total runoff volume. Additionally, rainfall events smaller than 6-month average recurrence interval (ARI) generates a greater cumulative runoff volume (68.4% of the total annual runoff volume) and TS load (68.6% of the TS load exported) than the rainfall events larger than 6-month ARI. The results suggest that for the study catchments, stormwater treatment design could be based on the rainfall which had a mean value of 31 mm/h average intensity and 0.4 h duration. These outcomes also confirmed that selecting smaller ARI rainfall events with high intensity-short duration as the threshold for treatment system design is the most feasible approach since these events cumulatively generate a major portion of the annual pollutant load compared to the other types of events, despite producing a relatively smaller runoff volume. This implies that designs based on small and more frequent rainfall events rather than larger rainfall events would be appropriate in the context of efficiency in treatment performance, cost-effectiveness and possible savings in land area needed.
Resumo:
Background: The quality of stormwater runoff from ports is significant as it can be an important source of pollution to the marine environment. This is also a significant issue for the Port of Brisbane as it is located in an area of high environmental values. Therefore, it is imperative to develop an in-depth understanding of stormwater runoff quality to ensure that appropriate strategies are in place for quality improvement. ---------------- The Port currently has a network of stormwater sample collection points where event based samples together with grab samples are tested for a range of water quality parameters. Whilst this information provides a ‘snapshot’ of the pollutants being washed from the catchment/s, it does not allow for a quantifiable assessment of total contaminant loads being discharged to the waters of Moreton Bay. It also does not represent pollutant build-up and wash-off from the different land uses across a broader range of rainfall events which might be expected. As such, it is difficult to relate stormwater quality to different pollutant sources within the Port environment. ----------------- Consequently, this would make the source tracking of pollutants to receiving waters extremely difficult and in turn the ability to implement appropriate mitigation measures. Also, without this detailed understanding, the efficacy of the various stormwater quality mitigation measures implemented cannot be determined with certainty. --------------- Current knowledge on port stormwater runoff quality Currently, little knowledge exists with regards to the pollutant generation capacity specific to port land uses as these do not necessarily compare well with conventional urban industrial or commercial land use due to the specific nature of port activities such as inter-modal operations and cargo management. Furthermore, traffic characteristics in a port area are different to a conventional urban area. Consequently, as data inputs based on an industrial and commercial land uses for modelling purposes is questionable. ------------------ A comprehensive review of published research failed to locate any investigations undertaken with regards to pollutant build-up and wash-off for port specific land uses. Furthermore, there is very limited information made available by various ports worldwide about the pollution generation potential of their facilities. Published work in this area has essentially focussed on the water quality or environmental values in the receiving waters such as the downstream bay or estuary. ----------------- The Project: The research project is an outcome of the collaborative Partnership between the Port of Brisbane Corporation (POBC) and Queensland University of Technology (QUT). A key feature of this Partnership is the undertaking of ‘cutting edge’ research to strengthen the environmental custodianship of the Port area. This project aims to develop a port specific stormwater quality model to allow informed decision making in relation to stormwater quality improvement in the context of the increased growth of the Port. --------------- Stage 1 of the research project focussed on the assessment of pollutant build-up and wash-off using rainfall simulation from the current Port of Brisbane facilities with the longer-term objective of contributing to the development of ecological risk mitigation strategies for future expansion scenarios. Investigation of complex processes such as pollutant wash-off using naturally occurring rainfall events has inherent difficulties. These can be overcome using simulated rainfall for the investigations. ----------------- The deliverables for Stage 1 included the following: * Pollutant build-up and wash-off profiles for six primary land uses within the Port of Brisbane to be used for water quality model development. * Recommendations with regards to future stormwater quality monitoring and pollution mitigation measures. The outcomes are expected to deliver the following benefits to the Port of Brisbane: * The availability of Port specific pollutant build-up and wash-off data will enable the implementation of customised stormwater pollution mitigation strategies. * The water quality data collected would form the baseline data for a Port specific water quality model for mitigation and predictive purposes. * To be at the cutting-edge in terms of water quality management and environmental best practice in the context of port infrastructure. ---------------- Conclusions: The important conclusions from the study are: * It confirmed that the Port environment is unique in terms of pollutant characteristics and is not comparable to typical urban land uses. * For most pollutant types, the Port land uses exhibited lower pollutant concentrations when compared to typical urban land uses. * The pollutant characteristics varied across the different land uses and were not consistent in terms of the land use. Hence, the implementation of stereotypical structural water quality improvement devices could be of limited value. * The <150m particle size range was predominant in suspended solids for pollutant build-up as well as wash-off. Therefore, if suspended solids are targeted as the surrogate parameter for water quality improvement, this specific particle size range needs to be removed. ------------------- Recommendations: Based on the study results the following preliminary recommendations are made: * Due to the appreciable variation in pollutant characteristics for different port land uses, any water quality monitoring stations should preferably be located such that source areas can be easily identified. * The study results having identified significant pollutants for the different land uses should enable the development of a more customised water quality monitoring and testing regime targeting the critical pollutants. * A ‘one size fits all’ approach may not be appropriate for the different port land uses due to the varying pollutant characteristics. As such, pollution mitigation will need to be specifically tailored to suit the specific land use. * Any structural measures implemented for pollution mitigation to be effective should have the capability to remove suspended solids of size <150m. * Based on the results presented and the particularly the fact that the Port land uses cannot be compared to conventional urban land uses in relation to pollutant generation, consideration should be given to the development of a port specific water quality model.
Resumo:
This thesis presents the outcomes of a comprehensive research study undertaken to investigate the influence of rainfall and catchment characteristics on urban stormwater quality. The knowledge created is expected to contribute to a greater understanding of urban stormwater quality and thereby enhance the design of stormwater quality treatment systems. The research study was undertaken based on selected urban catchments in Gold Coast, Australia. The research methodology included field investigations, laboratory testing, computer modelling and data analysis. Both univariate and multivariate data analysis techniques were used to investigate the influence of rainfall and catchment characteristics on urban stormwater quality. The rainfall characteristics investigated included average rainfall intensity and rainfall duration whilst catchment characteristics included land use, impervious area percentage, urban form and pervious area location. The catchment scale data for the analysis was obtained from four residential catchments, including rainfall-runoff records, drainage network data, stormwater quality data and land use and land cover data. Pollutants build-up samples were collected from twelve road surfaces in residential, commercial and industrial land use areas. The relationships between rainfall characteristics, catchment characteristics and urban stormwater quality were investigated based on residential catchments and then extended to other land uses. Based on the influence rainfall characteristics exert on urban stormwater quality, rainfall events can be classified into three different types, namely, high average intensity-short duration (Type 1), high average intensity-long duration (Type 2) and low average intensity-long duration (Type 3). This provides an innovative approach to conventional modelling which does not commonly relate stormwater quality to rainfall characteristics. Additionally, it was found that the threshold intensity for pollutant wash-off from urban catchments is much less than for rural catchments. High average intensity-short duration rainfall events are cumulatively responsible for the generation of a major fraction of the annual pollutants load compared to the other rainfall event types. Additionally, rainfall events less than 1 year ARI such as 6- month ARI should be considered for treatment design as they generate a significant fraction of the annual runoff volume and by implication a significant fraction of the pollutants load. This implies that stormwater treatment designs based on larger rainfall events would not be feasible in the context of cost-effectiveness, efficiency in treatment performance and possible savings in land area needed. This also suggests that the simulation of long-term continuous rainfall events for stormwater treatment design may not be needed and that event based simulations would be adequate. The investigations into the relationship between catchment characteristics and urban stormwater quality found that other than conventional catchment characteristics such as land use and impervious area percentage, other catchment characteristics such as urban form and pervious area location also play important roles in influencing urban stormwater quality. These outcomes point to the fact that the conventional modelling approach in the design of stormwater quality treatment systems which is commonly based on land use and impervious area percentage would be inadequate. It was also noted that the small uniformly urbanised areas within a larger mixed catchment produce relatively lower variations in stormwater quality and as expected lower runoff volume with the opposite being the case for large mixed use urbanised catchments. Therefore, a decentralised approach to water quality treatment would be more effective rather than an "end-of-pipe" approach. The investigation of pollutants build-up on different land uses showed that pollutant build-up characteristics vary even within the same land use. Therefore, the conventional approach in stormwater quality modelling, which is based solely on land use, may prove to be inappropriate. Industrial land use has relatively higher variability in maximum pollutant build-up, build-up rate and particle size distribution than the other two land uses. However, commercial and residential land uses had relatively higher variations of nutrients and organic carbon build-up. Additionally, it was found that particle size distribution had a relatively higher variability for all three land uses compared to the other build-up parameters. The high variability in particle size distribution for all land uses illustrate the dissimilarities associated with the fine and coarse particle size fractions even within the same land use and hence the variations in stormwater quality in relation to pollutants adsorbing to different sizes of particles.
Resumo:
This paper characterises nitrogen and phosphorus wash-off processes on urban road surfaces to create fundamental knowledge to strengthen stormwater treatment design. The study outcomes confirmed that the composition of initially available nutrients in terms of their physical association with solids and chemical speciation determines the wash-off characteristics. Nitrogen and phosphorus wash-off processes are independent of land use, but there are notable differences. Nitrogen wash-off is a “source limiting” process while phosphorus wash-off is “transport limiting”. Additionally, a clear separation between nitrogen and phosphorus wash-off processes based on dissolved and particulate forms confirmed that the common approach of replicating nutrients wash-off based on solids wash-off could lead to misleading outcomes particularly in the case of nitrogen. Nitrogen is present primarily in dissolved and organic form and readily removed even by low intensity rainfall events, which is an important consideration for nitrogen removal targeted treatment design. In the case of phosphorus, phosphate constitutes the primary species in wash-off for the particle size fraction <75 µm, while other species are predominant in particle size range >75 µm. This means that phosphorus removal targeted treatment design should consider both phosphorus speciation as well as particle size.
Resumo:
Urbanisation significantly changes the characteristics of a catchment as natural areas are transformed to impervious surfaces such as roads, roofs and parking lots. The increased fraction of impervious surfaces leads to changes to the stormwater runoff characteristics, whilst a variety of anthropogenic activities common to urban areas generate a range of pollutants such as nutrients, solids and organic matter. These pollutants accumulate on catchment surfaces and are removed and trans- ported by stormwater runoff and thereby contribute pollutant loads to receiving waters. In summary, urbanisation influences the stormwater characteristics of a catchment, including hydrology and water quality. Due to the growing recognition that stormwater pollution is a significant environmental problem, the implementation of mitigation strategies to improve the quality of stormwater runoff is becoming increasingly common in urban areas. A scientifically robust stormwater quality treatment strategy is an essential requirement for effective urban stormwater management. The efficient design of treatment systems is closely dependent on the state of knowledge in relation to the primary factors influencing stormwater quality. In this regard, stormwater modelling outcomes provide designers with important guidance and datasets which significantly underpin the design of effective stormwater treatment systems. Therefore, the accuracy of modelling approaches and the reliability modelling outcomes are of particular concern. This book discusses the inherent complexity and key characteristics in the areas of urban hydrology and stormwater quality, based on the influence exerted by a range of rainfall and catchment characteristics. A comprehensive field sampling and testing programme in relation to pollutant build-up, an urban catchment monitoring programme in relation to stormwater quality and the outcomes from advanced statistical analyses provided the platform for the knowledge creation. Two case studies and two real-world applications are discussed to illustrate the translation of the knowledge created to practical use in relation to the role of rainfall and catchment characteristics on urban stormwater quality. An innovative rainfall classification based on stormwater quality was developed to support the effective and scientifically robust design of stormwater treatment systems. Underpinned by the rainfall classification methodology, a reliable approach for design rainfall selection is proposed in order to optimise stormwater treatment based on both, stormwater quality and quantity. This is a paradigm shift from the common approach where stormwater treatment systems are designed based solely on stormwater quantity data. Additionally, how pollutant build-up and stormwater runoff quality vary with a range of catchment characteristics was also investigated. Based on the study out- comes, it can be concluded that the use of only a limited number of catchment parameters such as land use and impervious surface percentage, as it is the case in current modelling approaches, could result in appreciable error in water quality estimation. Influential factors which should be incorporated into modelling in relation to catchment characteristics, should also include urban form and impervious surface area distribution. The knowledge created through the research investigations discussed in this monograph is expected to make a significant contribution to engineering practice such as hydrologic and stormwater quality modelling, stormwater treatment design and urban planning, as the study outcomes provide practical approaches and recommendations for urban stormwater quality enhancement. Furthermore, this monograph also demonstrates how fundamental knowledge of stormwater quality processes can be translated to provide guidance on engineering practice, the comprehensive application of multivariate data analyses techniques and a paradigm on integrative use of computer models and mathematical models to derive practical outcomes.
Rainfall, Mosquito Density and the Transmission of Ross River Virus: A Time-Series Forecasting Model
Resumo:
This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.
Development of Thermally Comfortable Industrial Buildings with Effective Use of Computer Simulations