24 resultados para ENDO-1,3-BETA-GLUCANASE
em Queensland University of Technology - ePrints Archive
Resumo:
Objective Spondyloarthritides (SpA) occur in 1% of the population and include ankylosing spondylitis (AS) and arthropathy of inflammatory bowel disease (IBD), with characteristic spondylitis, arthritis, enthesitis, and IBD. Genetic studies implicate interleukin-23 (IL-23) receptor signaling in the development of SpA and IBD, and IL-23 overexpression in mice is sufficient for enthesitis, driven by entheseal-resident T cells. However, in genetically prone individuals, it is not clear where IL-23 is produced and how it drives the SpA syndrome, including IBD or subclinical gut inflammation of AS. Moreover, it is unclear why specific tissue involvement varies between patients with SpA. We undertook this study to determine the location of IL-23 production and its role in SpA pathogenesis in BALB/c ZAP-70W163C-mutant (SKG) mice injected intraperitoneally with β-1,3-glucan (curdlan). Methods Eight weeks after curdlan injection in wild-type or IL-17A-/- SKG or BALB/c mice, pathology was scored in tissue sections. Mice were treated with anti-IL-23 or anti-IL-22. Cytokine production and endoplasmic reticulum (ER) stress were determined in affected organs. Results In curdlan-treated SKG mice, arthritis, enthesitis, and ileitis were IL-23 dependent. Enthesitis was specifically dependent on IL-17A and IL-22. IL-23 was induced in the ileum, where it amplified ER stress, goblet cell dysfunction, and proinflammatory cytokine production. IL-17A was pathogenic, while IL-22 was protective against ileitis. IL-22+CD3- innate-like cells were increased in lamina propria mononuclear cells of ileitis-resistant BALB/c mice, which developed ileitis after curdlan injection and anti-IL-22. Conclusion In response to systemic β-1,3-glucan, intestinal IL-23 provokes local mucosal dysregulation and cytokines driving the SpA syndrome, including IL-17/IL-22-dependent enthesitis. Innate IL-22 production promotes ileal tolerance.
Resumo:
In the title compound, [Al(C8H4F3O2S)3]3[Fe(C8H4F3O2S)3], the metal centre is statistically occupied by AlIII and FeIII cations in a 3:1 ratio. The metal centre is within an octahedral O6 donor set defined by three chelating substituted acetoacetonate anions. The ligands are arranged around the periphery of the molecule with a mer geometry of the S atoms.
Resumo:
An improved synthetic route to α(1→3)/α(1→2)-linked mannooligosaccharides has been developed and applied to a more efficient preparation of the potent anti-angiogenic sulfated pentasaccharide, benzyl Manα(1→3)-Manα(1→3)-Manα(1→3)-Manα(1→2)-Man hexadecasulfate, using only two monosaccharide building blocks. Of particular note are improvements in the preparation of both building blocks and a simpler, final deprotection strategy. The route also provides common intermediates for the introduction of aglycones other than benzyl, either at the building block stage or after oligosaccharide assembly. The anti-angiogenic activity of the synthesized target compound was confirmed via the rat aortic assay.
Resumo:
Alcohol use disorders (AUDs) impact millions of individuals and there remain few effective treatment strategies. Despite evidence that neuronal nicotinic acetylcholine receptors (nAChRs) have a role in AUDs, it has not been established which subtypes of the nAChR are involved. Recent human genetic association studies have implicated the gene cluster CHRNA3-CHRNA5-CHRNB4 encoding the α3, α5, and β4 subunits of the nAChR in susceptibility to develop nicotine and alcohol dependence; however, their role in ethanol-mediated behaviors is unknown due to the lack of suitable and selective research tools. To determine the role of the α3, and β4 subunits of the nAChR in ethanol self-administration, we developed and characterized high-affinity partial agonists at α3β4 nAChRs, CP-601932, and PF-4575180. Both CP-601932 and PF-4575180 selectively decrease ethanol but not sucrose consumption and operant self-administration following long-term exposure. We show that the functional potencies of CP-601932 and PF-4575180 at α3β4 nAChRs correlate with their unbound rat brain concentrations, suggesting that the effects on ethanol self-administration are mediated via interaction with α3β4 nAChRs. Also varenicline, an approved smoking cessation aid previously shown to decrease ethanol consumption and seeking in rats and mice, reduces ethanol intake at unbound brain concentrations that allow functional interactions with α3β4 nAChRs. Furthermore, the selective α4β2(*) nAChR antagonist, DHβE, did not reduce ethanol intake. Together, these data provide further support for the human genetic association studies, implicating CHRNA3 and CHRNB4 genes in ethanol-mediated behaviors. CP-601932 has been shown to be safe in humans and may represent a potential novel treatment for AUDs.
Resumo:
The asymmetric unit of the title co-crystalline 1:2 adduct C12H12N2O2 . 2(C6H3N3O6) contains two independent molecules of bis(4-aminophenyl)sulfone (the drug Dapsone) and four molecules of 1,3,5-trinitrobenzene and is extended into a two-dimensional hydrogen-bonded network structure through amino N-H...O hydrogen-bonding associations with nitro O- atom acceptors. In the two independent Dapsone molecules the inter-ring dihedral angles are 69.0(2) and 63.59(11)deg. Aromatic pi-pi interactions are also found between one of the Dapsone aromatic rings and a trinitrobenzene ring [minimum ring centroid separation 3.576(5)Ang.]. A 4-aminophenyl ring moiety of one of the Dapsone molecules and two nitro groups of a trinitrobenzene are disordered in a 50:50 ratio.
Resumo:
In the structure of the title compound C16H26N+ Cl-, the salt of a precursor in the synthesis of an isoindolin-2-yloxyl free-radical trapping agent, the cations and anions form discrete centrosymetric cyclic dimers through N---H...Cl hydrogen-bonding associations [graph set R2/4(8)].
Resumo:
The structures of the anhydrous products from the interaction of 2-amino-5-(4-bromophenyl)-1,3,4-thiadiazole with (2-naphthoxy)acetic acid, the 1:1 adduct C8H6BrN3S . C12H10O3 (I) and 3,5-dinitrobenzoic acid, the salt C8H7BrN3S+ C7H3N2O6- (II) have been determined. In the adduct (I), a heterodimer is formed through a cyclic hydrogen-bonding motif [graph set R2/2(8)], involving carboxylic acid O-H...N(hetero)and amine N-H...O(carboxyl) interactions. The heterodimers are essentially planar with a thiadiazole to naphthyl ring dihedral angle of 15.9(2)deg. and the intramolecular thiadiazole to phenyl ring angle of 4.7(2)deg. An amine N-H...N(hetero) hydrogen bond between the heterodimers generates a one-dimensional chain structure extending down [001]. Also present are weak benzene-benzene and naphthalene-naphthalene pi-pi stacking interactions down the b axis [minimum ring centroid separation, 3.936(3) Ang.]. With the salt (II), the cation-anion association is also through a cyclic R2/2(8) motif but involving duplex N-H...O(carboxyl) hydrogen bonds, giving a heterodimer which is close to planar [dihedral angles between the thiadiazole ring and the two benzene rings, 5.00(16)deg. (intra) and 7.23(15)deg. (inter)]. A secondary centrosymmetric cyclic N-H...O(carboxyl) hydrogen-bonding association involving the second amino H-atom generates a heterotetramer. Also present in the crystal are weak pi-pi i-\p interactions between thiadiazolium rings [minimum ring centroid separation, 3.936(3)Ang.], as well as a short Br...O(nitro) interaction [3.314(4)Ang.]. The two structures reported here now provide a total of three crystallographically characterized examples of co-crystalline products from the interaction of 2-amino-5-(4-bromophenyl)-1,3,4-thiadiazole with carboxylic acids, of which only one involves proton-transfer.
Resumo:
Traditional methods are ill-suited for the synthesis of ortho,ortho-biphenols, a structural motif found in many polyphenolic natural products, as well as synthetically useful compounds such as the chiral ligands binol, vapol, and vanol. The new route consists of a radical-based reaction of an acetal-tethered biphenyl ether substrate and subsequent hydrolytic cleavage of the dibenzo-1,3-dioxepine intermediate.
Resumo:
1,4-Diazabicyclo[2.2.2]octane (DABCO) forms well-defined co-crystals with 1,2-diiodotetrafluorobenzene (1,2-DITFB), [(1,2-DITFB)2DABCO], and 1,3,5-triiodotrifluorobenzene, [(1,3,5-TITFB)2DABCO]. Both systems exhibited lower-than-expected supramolecular connectivity, which inspired a search for polymorphs in alternative crystallization solvents. In dichloromethane solution, the Menshutkin reaction was found to occur, generating chloride anions and quaternary ammonium cations through the reaction between the solvent and DABCO. The controlled in situ production of chloride ions facilitated the crystallization of new halogen bonded networks, DABCO–CH2Cl[(1,2-DITFB)Cl] (zigzag X-bonded chains) and (DABCO–CH2Cl)3[(1,3,5-TITFB)2Cl3]·CHCl3 (2D pseudo-trigonal X-bonded nets displaying Borremean entanglement), propagating with charge-assisted C–I···Cl– halogen bonds. The method was found to be versatile, and substitution of DABCO with triethylamine (TEA) gave (TEA-CH2Cl)3[(1,2-DITFB)Cl3]·4(H2O) (mixed halogen bond hydrogen bond network with 2D supramolecular connectivity) and TEA-CH2Cl[(1,3,5-TITFB)Cl] (tightly packed planar trigonal nets). The co-crystals were typically produced in high yield and purity with relatively predictable supramolecular topology, particularly with respect to the connectivity of the iodobenzene molecules. The potential to use this synthetic methodology for crystal engineering of halogen bonded architectures is demonstrated and discussed.