79 resultados para Dividing-engine.
em Queensland University of Technology - ePrints Archive
Underwater Emissions from a Two-Stroke Outboard Engine: Can the Type of Lubricant Make a Difference?
Resumo:
Exhaust emissions from thirteen compressed natural gas (CNG) and nine ultralow sulphur diesel in-service transport buses were monitored on a chassis dynamometer. Measurements were carried out at idle and at three steady engine loads of 25%, 50% and 100% of maximum power at a fixed speed of 60 kmph. Emission factors were estimated for particle mass and number, carbon dioxide and oxides of nitrogen for two types of CNG buses (Scania and MAN, compatible with Euro 2 and 3 emission standards, respectively) and two types of diesel buses (Volvo Pre-Euro/Euro1 and Mercedez OC500 Euro3). All emission factors increased with load. The median particle mass emission factor for the CNG buses was less than 1% of that from the diesel buses at all loads. However, the particle number emission factors did not show a statistically significant difference between buses operating on the two types of fuel. In this paper, for the very first time, particle number emission factors are presented at four steady state engine loads for CNG buses. Median values ranged from the order of 1012 particles min-1 at idle to 1015 particles km-1 at full power. Most of the particles observed in the CNG emissions were in the nanoparticle size range and likely to be composed of volatile organic compounds The CO2 emission factors were about 20% to 30% greater for the diesel buses over the CNG buses, while the oxides of nitrogen emission factors did not show any difference due to the large variation between buses.
Resumo:
Search engines have forever changed the way people access and discover knowledge, allowing information about almost any subject to be quickly and easily retrieved within seconds. As increasingly more material becomes available electronically the influence of search engines on our lives will continue to grow. This presents the problem of how to find what information is contained in each search engine, what bias a search engine may have, and how to select the best search engine for a particular information need. This research introduces a new method, search engine content analysis, in order to solve the above problem. Search engine content analysis is a new development of traditional information retrieval field called collection selection, which deals with general information repositories. Current research in collection selection relies on full access to the collection or estimations of the size of the collections. Also collection descriptions are often represented as term occurrence statistics. An automatic ontology learning method is developed for the search engine content analysis, which trains an ontology with world knowledge of hundreds of different subjects in a multilevel taxonomy. This ontology is then mined to find important classification rules, and these rules are used to perform an extensive analysis of the content of the largest general purpose Internet search engines in use today. Instead of representing collections as a set of terms, which commonly occurs in collection selection, they are represented as a set of subjects, leading to a more robust representation of information and a decrease of synonymy. The ontology based method was compared with ReDDE (Relevant Document Distribution Estimation method for resource selection) using the standard R-value metric, with encouraging results. ReDDE is the current state of the art collection selection method which relies on collection size estimation. The method was also used to analyse the content of the most popular search engines in use today, including Google and Yahoo. In addition several specialist search engines such as Pubmed and the U.S. Department of Agriculture were analysed. In conclusion, this research shows that the ontology based method mitigates the need for collection size estimation.
Resumo:
Digital Songlines (DSL) is an Australasian CRC for Interaction Design (ACID) project that is developing protocols, methodologies and toolkits to facilitate the collection, education and sharing of indigenous cultural heritage knowledge. This paper outlines the goals achieved over the last three years in the development of the Digital Songlines game engine (DSE) toolkit that is used for Australian Indigenous storytelling. The project explores the sharing of indigenous Australian Aboriginal storytelling in a sensitive manner using a game engine. The use of the game engine in the field of Cultural Heritage is expanding. They are an important tool for the recording and re-presentation of historically, culturally, and sociologically significant places, infrastructure, and artefacts, as well as the stories that are associated with them. The DSL implementation of a game engine to share storytelling provides an educational interface. Where the DSL implementation of a game engine in a CH application differs from others is in the nature of the game environment itself. It is modelled on the 'country' (the 'place' of their heritage which is so important to the clients' collective identity) and authentic fauna and flora that provides a highly contextualised setting for the stories to be told. This paper provides an overview on the development of the DSL game engine.
Resumo:
In this paper, we use time series analysis to evaluate predictive scenarios using search engine transactional logs. Our goal is to develop models for the analysis of searchers’ behaviors over time and investigate if time series analysis is a valid method for predicting relationships between searcher actions. Time series analysis is a method often used to understand the underlying characteristics of temporal data in order to make forecasts. In this study, we used a Web search engine transactional log and time series analysis to investigate users’ actions. We conducted our analysis in two phases. In the initial phase, we employed a basic analysis and found that 10% of searchers clicked on sponsored links. However, from 22:00 to 24:00, searchers almost exclusively clicked on the organic links, with almost no clicks on sponsored links. In the second and more extensive phase, we used a one-step prediction time series analysis method along with a transfer function method. The period rarely affects navigational and transactional queries, while rates for transactional queries vary during different periods. Our results show that the average length of a searcher session is approximately 2.9 interactions and that this average is consistent across time periods. Most importantly, our findings shows that searchers who submit the shortest queries (i.e., in number of terms) click on highest ranked results. We discuss implications, including predictive value, and future research.
Resumo:
This combined PET and ERP study was designed to identify the brain regions activated in switching and divided attention between different features of a single object using matched sensory stimuli and motor response. The ERP data have previously been reported in this journal [64]. We now present the corresponding PET data. We identified partially overlapping neural networks with paradigms requiring the switching or dividing of attention between the elements of complex visual stimuli. Regions of activation were found in the prefrontal and temporal cortices and cerebellum. Each task resulted in different prefrontal cortical regions of activation lending support to the functional subspecialisation of the prefrontal and temporal cortices being based on the cognitive operations required rather than the stimuli themselves.
Resumo:
Particle emissions, volatility, and the concentration of reactive oxygen species (ROS) were investigated for a pre-Euro I compression ignition engine to study the potential health impacts of employing ethanol fumigation technology. Engine testing was performed in two separate experimental campaigns with most testing performed at intermediate speed with four different load settings and various ethanol substitutions. A scanning mobility particle sizer (SMPS) was used to determine particle size distributions, a volatilization tandem differential mobility analyzer (V-TDMA) was used to explore particle volatility, and a new profluorescent nitroxide probe, BPEAnit, was used to investigate the potential toxicity of particles. The greatest particulate mass reduction was achieved with ethanol fumigation at full load, which contributed to the formation of a nucleation mode. Ethanol fumigation increased the volatility of particles by coating the particles with organic material or by making extra organic material available as an external mixture. In addition, the particle-related ROS concentrations increased with ethanol fumigation and were associated with the formation of a nucleation mode. The smaller particles, the increased volatility, and the increase in potential particle toxicity with ethanol fumigation may provide a substantial barrier for the uptake of fumigation technology using ethanol as a supplementary fuel.