114 resultados para Dissipative forces
em Queensland University of Technology - ePrints Archive
Resumo:
This paper serves as a first study on the implementation of control strategies developed using a kinematic reduction onto test bed autonomous underwater vehicles (AUVs). The equations of motion are presented in the framework of differential geometry, including external dissipative forces, as a forced affine connection control system. We show that the hydrodynamic drag forces can be included in the affine connection, resulting in an affine connection control system. The definitions of kinematic reduction and decoupling vector field are thus extended from the ideal fluid scenario. Control strategies are computed using this new extension and are reformulated for implementation onto a test-bed AUV. We compare these geometrically computed controls to time and energy optimal controls for the same trajectory which are computed using a previously developed algorithm. Through this comparison we are able to validate our theoretical results based on the experiments conducted using the time and energy efficient strategies.
Decoupled trajectory planning for a submerged rigid body subject to dissipative and potential forces
Resumo:
This paper studies the practical but challenging problem of motion planning for a deeply submerged rigid body. Here, we formulate the dynamic equations of motion of a submerged rigid body under the architecture of differential geometric mechanics and include external dissipative and potential forces. The mechanical system is represented as a forced affine-connection control system on the configuration space SE(3). Solutions to the motion planning problem are computed by concatenating and reparameterizing the integral curves of decoupling vector fields. We provide an extension to this inverse kinematic method to compensate for external potential forces caused by buoyancy and gravity. We present a mission scenario and implement the theoretically computed control strategy onto a test-bed autonomous underwater vehicle. This scenario emphasizes the use of this motion planning technique in the under-actuated situation; the vehicle loses direct control on one or more degrees of freedom. We include experimental results to illustrate our technique and validate our method.
Resumo:
This paper traces the history of store (retailer-controlled) and national (manufacture controlled)brands; identifies the key historical characteristics of the past 200 years of marketing history;describes the four main time periods of U.S. retail marketing (1800 - 2000); and comments on the most likely developments within the current phases of brand marketing. Will the future focus on technology and new forms of communications? The Internet exemplifies an unconventional retailing environment, with etailer numbers growing rapidly. The central proposition of this paper is that a "cycle of control" - a pattern of marketing developments within the history of retailing and national marketing communications - Can indicate the success of marketing strategies in the future.
Project diagnostics : assessing the condition of projects and identifying poor health combing forces
Resumo:
In many cases, construction projects do not achieve the objectives that the project participants set for them. If participants could better understand how their project is performing overall, at various stages of its delivery, then the opportunities to achieve project success would almost certainly be greater. This paper documents a method of assessing the status of a project, at a point in its design or construction phase, or after completion. The status is assessed in terms of up to seven (7) key success factors. Any evidence of less than adequate performance in these performance areas is scrutinised to seek out the root causes of why this situation is happening. Using these identified root causes of under performance, general suggestions can then be made as to how to return the project to good health. A software package that assists in assessing the status of the project has been developed. The package is currently being calibrated before commercial release.
Resumo:
Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity in paediatrics, prevalent in approximately 2-4% of the general population. While it is a complex three-dimensional deformity, it is clinically characterised by an abnormal lateral curvature of the spine. The treatment for severe deformity is surgical correction with the use of structural implants. Anterior single rod correction employs a solid rod connected to the anterior spine via vertebral body screws. Correction is achieved by applying compression between adjacent vertebral body screws, before locking each screw onto the rod. Biomechanical complication rates have been reported as high as 20.8%, and include rod breakage, screw pull-out and loss of correction. Currently, the corrective forces applied to the spine are unknown. These forces are important variables to consider in understanding the biomechanics of scoliosis correction. The purpose of this study was to measure these forces intra-operatively during anterior single rod AIS correction.
Resumo:
A research project was conducted at Queensland University of Technology on the relationship between the forces at the wheel-rail interface in track and the rate of degradation of track. Data for the study was obtained from an instrumented vehicle which ran repeatedly over a section of Queensland Rail's track in Central Queensland over a 6-month period. The wheel-rail forces had to be correlated with the elements of roughness in the test track profile, which were measured with a variety of equipment. At low frequencies, there was strong correlation between forces and profile, as expected, but diminishing correlation as frequencies increased.
Resumo:
An investigation has been made of the interactions between silicone oil and various solid substrates immersed in aqueous solutions. Measurements were made using an atomic force microscope (AFM) using the colloid-probe method. The silicone oil drop is simulated by coating a small silica sphere with the oil, and measuring the force as this coated sphere is brought close to contact with a flat solid surface. It is found that the silicone oil surface is negatively charged, which causes a double-layer repulsion between the oil drop and another negatively charged surface such as mica. With hydrophilic solids, this repulsion is strong enough to prevent attachment of the drop to the solid. However, with hydrophobic surfaces there is an additional attractive force which overcomes the double-layer repulsion, and the silicone oil drop attaches to the solid. A "ramp" force appears in some, but not all, of the data sets. There is circumstantial evidence that this force results from compression of the silicone oil film coated on the glass sphere.
Resumo:
• For the purposes of this chapter, “health law” encapsulates regulation of the medical and health professions, the administration of health services and the maintenance of public health to the extent that it is connected to the provision of health services. • There are diverging views as to whether health law can be regarded as a discrete “area of law”. • Health law draws on other areas of law such as tort law, criminal law and family law. It is also draws upon other disciplines, most notably medical and health ethics. • Social and economic forces have influenced the development and direction of health law, and these forces may become even more influential as the century develops. • The increasingly globalised world has implications for Australia’s health systems and raises questions and creates commitments in respect of the international community. • Technological developments, including in respect of treatment, diagnosis and information management, create ongoing challenges for health law. • Patient rights, human rights and consumerism are increasingly key drivers in the development of health law. • Health law is significant to contemporary Australian society because of the gravity of the topics that fall within its ambit, its social relevance to so many aspects of human existence and endeavour, the important role it plays in protecting the vulnerable, and the extent to which it engages with fundamental principles of justice.
Resumo:
At the Mater Children’s Hospital, approximately 80% of patients presenting with Adolescent Idiopathic Scoliosis requiring corrective surgery receive a fulcrum bending radiograph. The fulcrum bending radiograph provides a measurement of spine flexibility and a better indication of achievable surgical correction than lateral-bending radiographs (Cheung and Luk, 1997; Hay et al 2008). The magnitude and distribution of the corrective force exerted by the bolster on the patient’s body is unknown. The objective of this pilot study was to measure, for the first time, the forces transmitted to the patient’s ribs through the bolster during the fulcrum bending radiograph.
Resumo:
The main focus of this paper is the motion planning problem for a deeply submerged rigid body. The equations of motion are formulated and presented by use of the framework of differential geometry and these equations incorporate external dissipative and restoring forces. We consider a kinematic reduction of the affine connection control system for the rigid body submerged in an ideal fluid, and present an extension of this reduction to the forced affine connection control system for the rigid body submerged in a viscous fluid. The motion planning strategy is based on kinematic motions; the integral curves of rank one kinematic reductions. This method is of particular interest to autonomous underwater vehicles which can not directly control all six degrees of freedom (such as torpedo shaped AUVs) or in case of actuator failure (i.e., under-actuated scenario). A practical example is included to illustrate our technique.