148 resultados para Design of Experiments and Sample Surveys
em Queensland University of Technology - ePrints Archive
Resumo:
Optimal design for generalized linear models has primarily focused on univariate data. Often experiments are performed that have multiple dependent responses described by regression type models, and it is of interest and of value to design the experiment for all these responses. This requires a multivariate distribution underlying a pre-chosen model for the data. Here, we consider the design of experiments for bivariate binary data which are dependent. We explore Copula functions which provide a rich and flexible class of structures to derive joint distributions for bivariate binary data. We present methods for deriving optimal experimental designs for dependent bivariate binary data using Copulas, and demonstrate that, by including the dependence between responses in the design process, more efficient parameter estimates are obtained than by the usual practice of simply designing for a single variable only. Further, we investigate the robustness of designs with respect to initial parameter estimates and Copula function, and also show the performance of compound criteria within this bivariate binary setting.
Resumo:
This paper explores the design of virtual and physical learning spaces developed for students of drama and theatre studies. What can we learn from the traditional drama workshop that will inform the design of drama and theatre spaces created in technology-mediated learning environments? The authors examine four examples of spaces created for online, distance and on-campus students and discuss the relationship between the choice of technology, the learning and teaching methods, and the outcomes for student engagement. Combining insights from two previous action research projects, the discussion focuses on the physical space used for contemporary drama workshops, supplemented by Web 2.0 technologies; a modular online theatre studies course; the blogging space of students creating a group devised play; and the open and immersive world of Second Life, where students explore 3D simulations of historical theatre sites. The authors argue that the drama workshop can be used as inspiration for the design of successful online classrooms. This is achieved by focusing on students’ contributions to the learning as individuals and group members, the aesthetics and mise-en-scene of the learning space, and the role of mobile and networked technologies. Students in this environment increase their capacity to become co-creators of knowledge and to achieve creative outcomes. The drama workshop space in its physical and virtual forms is seen as a model for classrooms in other disciplines, where dynamic, creative and collaborative spaces are required.
Resumo:
The flexible design of decoupling and matching networks for coupled antennas is introduced. The network includes three parts: circuits for impedance transformation, an element for odd-mode decoupling and conventional matching networks. It is found that all three parts are determined by one parameter of the ABCD matrix of the impedance transformation circuit. Thus a large variety of circuits with different element values can be used for decoupling which relaxes the practical design constraints.
Resumo:
Repeatable and accurate seagrass mapping is required for understanding seagrass ecology and supporting management decisions. For shallow (< 5 m) seagrass habitats, these maps can be created by integrating high spatial resolution imagery with field survey data. Field survey data for seagrass is often collected via snorkelling or diving. However, these methods are limited by environmental and safety considerations. Autonomous Underwater Vehicles (AUVs) are used increasingly to collect field data for habitat mapping, albeit mostly in deeper waters (>20 m). Here we demonstrate and evaluate the use and potential advantages of AUV field data collection for calibration and validation of seagrass habitat mapping of shallow waters (< 5 m), from multispectral satellite imagery. The study was conducted in the seagrass habitats of the Eastern Banks (142 km2), Moreton Bay, Australia. In the field, georeferenced photos of the seagrass were collected along transects via snorkelling or an AUV. Photos from both collection methods were analysed manually for seagrass species composition and then used as calibration and validation data to map seagrass using an established semi-automated object based mapping routine. A comparison of the relative advantages and disadvantages of AUV and snorkeller collected field data sets and their influence on the mapping routine was conducted. AUV data collection was more consistent, repeatable and safer in comparison to snorkeller transects. Inclusion of deeper water AUV data resulted in mapping of a larger extent of seagrass (~7 km2, 5 % of study area) in the deeper waters of the site. Although overall map accuracies did not differ considerably, inclusion of the AUV data from deeper water transects corrected errors in seagrass mapped at depths to 5 m, but where the bottom is visible on satellite imagery. Our results demonstrate that further development of AUV technology is justified for the monitoring of seagrass habitats in ongoing management programs.
Resumo:
The era of knowledge-based urban development has led to an unprecedented increase in mobility of people and the subsequent growth in new typologies of agglomerated enclaves of knowledge such as knowledge and innovation spaces. Within this context, a new role has been assigned to contemporary public spaces to attract and retain the mobile knowledge workforce by creating a sense of place. This paper investigates place making in the globalized knowledge economy, which develops a sense of permanence spatio-temporally to knowledge workers displaying a set of particular characteristics and simultaneously is process-dependent getting developed by the internal and external flows and contributing substantially in the development of the broader context it stands in relation with. The paper reviews the literature and highlights observations from Kelvin Grove Urban Village, located in Australia’s new world city Brisbane, to understand the application of urban design as a vehicle to create and sustain place making in knowledge and innovation spaces. This research seeks to analyze the modified permeable typology of public spaces that makes knowledge and innovation spaces more viable and adaptive as per the changing needs of the contemporary globalized knowledge society.
Resumo:
This thesis investigates the design of motivating and engaging software experiences. In particular it examines the use of video game elements in non-game contexts, known as gamification, and how to effectively design gamification experiences for smartphone applications. The original contribution of this thesis is a novel framework for designing gamification, derived from an iterative process of evaluating gamified prototypes. The outcomes of this research can help us to better understand the impact of gamification in today's society and how it can be used to design more effective software.
Resumo:
This paper investigates the effects of experience on the intuitiveness of physical and visual interactions performed by airport security screeners. Using portable eye tracking glasses, 40 security screeners were observed in the field as they performed search, examination and interface interactions during airport security x-ray screening. Data from semi structured interviews was used to further explore the nature of visual and physical interactions. Results show there are positive relationships between experience and the intuitiveness of visual and physical interactions performed by security screeners. As experience is gained, security screeners are found to perform search, examination and interface interactions more intuitively. In addition to experience, results suggest that intuitiveness is affected by the nature and modality of activities performed. This inference was made based on the dominant processing styles associated with search and examination activities. The paper concludes by discussing the implications that this research has for the design of visual and physical interfaces. We recommend designing interfaces that build on users’ already established intuitive processes, and that reduce the cognitive load incurred during transitions between visual and physical interactions.
Resumo:
Cutaneous malignant melanoma (CMM) is a major health issue in Queensland, Australia, which has the world’s highest incidence. Recent molecular and epidemiologic studies suggest that CMM arises through multiple etiological pathways involving gene-environment interactions. Understanding the potential mechanisms leading to CMM requires larger studies than those previously conducted. This article describes the design and baseline characteristics of Q-MEGA, the Queensland Study of Melanoma: Environmental and Genetic Associations, which followed up 4 population-based samples of CMM patients in Queensland, including children, adolescents, men aged over 50, and a large sample of adult cases and their families, including twins. Q-MEGA aims to investigate the roles of genetic and environmental factors, and their interaction, in the etiology of melanoma. Three thousand, four hundred and seventy-one participants took part in the follow-up study and were administered a computer-assisted telephone interview in 2002-2005. Updated data on environmental and phenotypic risk factors, and 2777 blood samples were collected from interviewed participants as well as a subset of relatives. This study provides a large and well-described population-based sample of CMM cases with follow-up data. Characteristics of the cases and repeatability of sun exposure and phenotype measures between the baseline and the follow-up surveys, from 6 to 17 years later, are also described.
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using a patented Dual Electric Resistance Welding technique. The LSB has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. It is commonly used as rafters, floor joists and bearers and roof beams in residential, industrial and commercial buildings. It is on average 40% lighter than traditional hot-rolled steel beams of equivalent performance. The LSB flexural members are subjected to a relatively new Lateral Distortional Buckling mode, which reduces the member moment capacity. Unlike the commonly observed lateral torsional buckling of steel beams, lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist and web distortion. Current member moment capacity design rules for lateral distortional buckling in AS/NZS 4600 (SA, 2005) do not include the effect of section geometry of hollow flange beams although its effect is considered to be important. Therefore detailed experimental and finite element analyses (FEA) were carried out to investigate the lateral distortional buckling behaviour of LSBs including the effect of section geometry. The results showed that the current design rules in AS/NZS 4600 (SA, 2005) are over-conservative in the inelastic lateral buckling region. New improved design rules were therefore developed for LSBs based on both FEA and experimental results. A geometrical parameter (K) defined as the ratio of the flange torsional rigidity to the major axis flexural rigidity of the web (GJf/EIxweb) was identified as the critical parameter affecting the lateral distortional buckling of hollow flange beams. The effect of section geometry was then included in the new design rules using the new parameter (K). The new design rule developed by including this parameter was found to be accurate in calculating the member moment capacities of not only LSBs, but also other types of hollow flange steel beams such as Hollow Flange Beams (HFBs), Monosymmetric Hollow Flange Beams (MHFBs) and Rectangular Hollow Flange Beams (RHFBs). The inelastic reserve bending capacity of LSBs has not been investigated yet although the section moment capacity tests of LSBs in the past revealed that inelastic reserve bending capacity is present in LSBs. However, the Australian and American cold-formed steel design codes limit them to the first yield moment. Therefore both experimental and FEA were carried out to investigate the section moment capacity behaviour of LSBs. A comparison of the section moment capacity results from FEA, experiments and current cold-formed steel design codes showed that compact and non-compact LSB sections classified based on AS 4100 (SA, 1998) have some inelastic reserve capacity while slender LSBs do not have any inelastic reserve capacity beyond their first yield moment. It was found that Shifferaw and Schafer’s (2008) proposed equations and Eurocode 3 Part 1.3 (ECS, 2006) design equations can be used to include the inelastic bending capacities of compact and non-compact LSBs in design. As a simple design approach, the section moment capacity of compact LSB sections can be taken as 1.10 times their first yield moment while it is the first yield moment for non-compact sections. For slender LSB sections, current cold-formed steel codes can be used to predict their section moment capacities. It was believed that the use of transverse web stiffeners could improve the lateral distortional buckling moment capacities of LSBs. However, currently there are no design equations to predict the elastic lateral distortional buckling and member moment capacities of LSBs with web stiffeners under uniform moment conditions. Therefore, a detailed study was conducted using FEA to simulate both experimental and ideal conditions of LSB flexural members. It was shown that the use of 3 to 5 mm steel plate stiffeners welded or screwed to the inner faces of the top and bottom flanges of LSBs at third span points and supports provided an optimum web stiffener arrangement. Suitable design rules were developed to calculate the improved elastic buckling and ultimate moment capacities of LSBs with these optimum web stiffeners. A design rule using the geometrical parameter K was also developed to improve the accuracy of ultimate moment capacity predictions. This thesis presents the details and results of the experimental and numerical studies of the section and member moment capacities of LSBs conducted in this research. It includes the recommendations made regarding the accuracy of current design rules as well as the new design rules for lateral distortional buckling. The new design rules include the effects of section geometry of hollow flange steel beams. This thesis also developed a method of using web stiffeners to reduce the lateral distortional buckling effects, and associated design rules to calculate the improved moment capacities.
Resumo:
This paper summarises some of the recent studies on various types of learning approaches that have utilised some form of Web 2.0 services in curriculum design to enhance learning. A generic implementation model of this integration will then be presented to illustrate the overall learning implementation process. Recently, the integration of Web 2.0 technologies into learning curriculum has begun to get a wide acceptance among teaching instructors across various higher learning institutions. This is evidenced by numerous studies which indicate the implementation of a range of Web 2.0 technologies into their learning design to improve learning delivery. Moreover, recent studies also have shown that the ability of current students to embrace Web 2.0 technologies is better than students using existing learning technology. Despite various attempts made by teachers in relation to the integration, researchers have noted a lack of integration standard to help in curriculum design. The absence of this standard will restrict the capacity of Web 2.0 adaptation into learning and adding more the complexity to provide meaningful learning. Therefore, this paper will attempt to draw a conceptual integration model which is being generated to reflect how learning activities with some facilitation of Web 2.0 is currently being implemented. The design of this model is based on shared experiences by many scholars as well as feedback gathered from two separate surveys conducted on teachers and a group of 180 students. Furthermore, this paper also recognizes some key components that generally engage in the design of a Web 2.0 teaching and learning which need to be addressed accordingly. Overall, the content of this paper will be organised as follows. The first part of the paper will introduce the importance of Web 2.0 implementation in teaching and learning from the perspective of higher education institutions and those challenges surrounding this area. The second part summarizes related works done in this field and brings forward the concept of designing learning with the incorporation of Web 2.0 technology. The next part presents the results of analysis derived from the two student and teachers surveys on using Web 2.0 during learning activities. This paper concludes by presenting a model that reflects several key entities that may be involved during the learning design.
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange channel section developed using a patented dual electric resistance welding and cold-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a slender web, and is commonly used as flexural members. However, the LSB flexural members are subjected to a relatively new lateral distortional buckling mode, which reduces their moment capacities. Unlike lateral torsional buckling, the lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist and cross sectional change due to web distortion. Therefore a detailed investigation into the lateral buckling behaviour of LSB flexural members was undertaken using experiments and finite element analyses. This paper presents the details of suitable finite element models developed to simulate the behaviour and capacity of LSB flexural members subject to lateral buckling. The models included all significant effects that influence the ultimate moment capacities of such members, including material inelasticity, lateral distortional buckling deformations, web distortion, residual stresses, and geometric imperfections. Comparison of elastic buckling and ultimate moment capacity results with predictions from other numerical analyses and available buckling moment equations, and experimental results showed that the developed finite element models accurately predict the behaviour and moment capacities of LSBs. The validated model was then used in a detailed parametric study that produced accurate moment capacity data for all the LSB sections and improved design rules for LSB flexural members subject to lateral distortional buckling.
Resumo:
This research project explores how interdisciplinary art practices can provide ways for questioning and envisaging alternative modes of coexistence between humans and the non-humans who together, make up the environment. As a practiceled project, it combines a body of creative work (50%) and this exegesis (50%). My interdisciplinary artistic practice appropriates methods and processes from science and engineering and merges them into artistic contexts for critical and poetic ends. By blending pseudo-scientific experimentation with creative strategies like visual fiction, humour, absurd public performance and scripted audience participation, my work engages with a range of debates around ecology. This exegesis details the interplay between critical theory relating to these debates, the work of other creative practitioners and my own evolving artistic practice. Through utilising methods and processes drawn from my prior career in water engineering, I present an interdisciplinary synthesis that seeks to promote improved understandings of the causes and consequences of our ecological actions and inactions.
Resumo:
Profiled steel roof claddings in Australia are commonly made of very thin high tensile steel and are crest-fixed with screw fasteners. At present the design of these claddings is entirely based on testing. In order to improve the understanding of the behaviour of these claddings under wind uplift, and thus the design methods, a detailed investigation consisting of a finite element analysis and laboratory experiments was carried out on two-span roofing assemblies of three common roofing profiles. It was found that the failure of the roof cladding system was due to a local failure (dimpling of crests/pull-through) at the fasteners. This paper presents the details of the investigation, the results and then proposes a design method based on the strength of the screwed connections, for which testing of small-scale roofing models and/or using a simple design formula is recommended.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in buildings due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. Many research studies have been carried out to evaluate the behaviour and design of LCBs subject to pure bending actions. However, limited research has been undertaken on the shear behaviour and strength of LCBs. Hence a numerical study was undertaken to investigate the shear behaviour and strength of LCBs. Finite element models of simply supported LCBs with aspect ratios of 1.0 and 1.5 were considered under a mid-span load. They were then validated by comparing their results with test results and used in a detailed parametric study based on the validated finite element models. Numerical studies were conducted to investigate the shear buckling and post-buckling behaviour of LCBs. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs. Improved design equations were therefore proposed for the shear strength of LCBs. This paper presents the details of this numerical study of LCBs and the results.