631 resultados para Data-representation
em Queensland University of Technology - ePrints Archive
Resumo:
A tag-based item recommendation method generates an ordered list of items, likely interesting to a particular user, using the users past tagging behaviour. However, the users tagging behaviour varies in different tagging systems. A potential problem in generating quality recommendation is how to build user profiles, that interprets user behaviour to be effectively used, in recommendation models. Generally, the recommendation methods are made to work with specific types of user profiles, and may not work well with different datasets. In this paper, we investigate several tagging data interpretation and representation schemes that can lead to building an effective user profile. We discuss the various benefits a scheme brings to a recommendation method by highlighting the representative features of user tagging behaviours on a specific dataset. Empirical analysis shows that each interpretation scheme forms a distinct data representation which eventually affects the recommendation result. Results on various datasets show that an interpretation scheme should be selected based on the dominant usage in the tagging data (i.e. either higher amount of tags or higher amount of items present). The usage represents the characteristic of user tagging behaviour in the system. The results also demonstrate how the scheme is able to address the cold-start user problem.
Resumo:
This chapter addresses data modelling as a means of promoting statistical literacy in the early grades. Consideration is first given to the importance of increasing young children’s exposure to statistical reasoning experiences and how data modelling can be a rich means of doing so. Selected components of data modelling are then reviewed, followed by a report on some findings from the third-year of a three-year longitudinal study across grades one through three.
Resumo:
In this paper we describe the design of DNA Jewellery, which is a wearable tangible data representation of personal DNA profile data. An iterative design process was followed to develop a 3D form-language that could be mapped to standard DNA profile data, with the aim of retaining readability of data while also producing an aesthetically pleasing and unique result in the area of personalized design. The work explores design issues with the production of data tangibles, contributes to a growing body of research exploring tangible representations of data and highlights the importance of approaches that move between technology, art and design.
Resumo:
The Echology: Making Sense of Data initiative seeks to break new ground in arts practice by asking artists to innovate with respect to a) the possible forms of data representation in public art and b) the artist's role in engaging publics on environmental sustainability in new urban developments. Initiated by ANAT and Carbon Arts in 2011, Echology has seen three artists selected by National competition in 2012 for Lend Lease sites across Australia. In 2013 commissioning of one of these works, the Mussel Choir by Natalie Jeremijenko, began in Melbourne's Victoria Harbour development. This emerging practice of data - driven and environmentally engaged public artwork presents multiple challenges to established systems of public arts production and management, at the same time as offering up new avenues for artists to forge new modes of collaboration. The experience of Echology and in particular, the Mussel Choir is examined here to reveal opportunities for expansion of this practice through identification of the factors that lead to a resilient 'ecology of part nership' between stakeholders that include science and technology researchers, education providers, city administrators, and urban developers.
Resumo:
In this paper we describe the design of DNA Jewelry, which is a wearable tangible data representation of personal DNA profile data. An iterative design process was followed to develop a 3D form-language that could be mapped to standard DNA profile data, with the aim of retaining readability of data while also producing an aesthetically pleasing and unique result in the area of personalised design. The work explores design issues with the production of data tangibles, contributes to a growing body of research exploring tangible representations of data and highlights the importance of approaches that move between technology, art and design.
Resumo:
Executive Summary The objective of this report was to use the Sydney Opera House as a case study of the application of Building Information Modelling (BIM). The Sydney opera House is a complex, large building with very irregular building configuration, that makes it a challenging test. A number of key concerns are evident at SOH: • the building structure is complex, and building service systems - already the major cost of ongoing maintenance - are undergoing technology change, with new computer based services becoming increasingly important. • the current “documentation” of the facility is comprised of several independent systems, some overlapping and is inadequate to service current and future services required • the building has reached a milestone age in terms of the condition and maintainability of key public areas and service systems, functionality of spaces and longer term strategic management. • many business functions such as space or event management require up-to-date information of the facility that are currently inadequately delivered, expensive and time consuming to update and deliver to customers. • major building upgrades are being planned that will put considerable strain on existing Facilities Portfolio services, and their capacity to manage them effectively While some of these concerns are unique to the House, many will be common to larger commercial and institutional portfolios. The work described here supported a complementary task which sought to identify if a building information model – an integrated building database – could be created, that would support asset & facility management functions (see Sydney Opera House – FM Exemplar Project, Report Number: 2005-001-C-4 Building Information Modelling for FM at Sydney Opera House), a business strategy that has been well demonstrated. The development of the BIMSS - Open Specification for BIM has been surprisingly straightforward. The lack of technical difficulties in converting the House’s existing conventions and standards to the new model based environment can be related to three key factors: • SOH Facilities Portfolio – the internal group responsible for asset and facility management - have already well established building and documentation policies in place. The setting and adherence to well thought out operational standards has been based on the need to create an environment that is understood by all users and that addresses the major business needs of the House. • The second factor is the nature of the IFC Model Specification used to define the BIM protocol. The IFC standard is based on building practice and nomenclature, widely used in the construction industries across the globe. For example the nomenclature of building parts – eg ifcWall, corresponds to our normal terminology, but extends the traditional drawing environment currently used for design and documentation. This demonstrates that the international IFC model accurately represents local practice for building data representation and management. • a BIM environment sets up opportunities for innovative processes that can exploit the rich data in the model and improve services and functions for the House: for example several high-level processes have been identified that could benefit from standardized Building Information Models such as maintenance processes using engineering data, business processes using scheduling, venue access, security data and benchmarking processes using building performance data. The new technology matches business needs for current and new services. The adoption of IFC compliant applications opens the way forward for shared building model collaboration and new processes, a significant new focus of the BIM standards. In summary, SOH current building standards have been successfully drafted for a BIM environment and are confidently expected to be fully developed when BIM is adopted operationally by SOH. These BIM standards and their application to the Opera House are intended as a template for other organisations to adopt for the own procurement and facility management activities. Appendices provide an overview of the IFC Integrated Object Model and an understanding IFC Model Data.
Resumo:
“SOH see significant benefit in digitising its drawings and operation and maintenance manuals. Since SOH do not currently have digital models of the Opera House structure or other components, there is an opportunity for this national case study to promote the application of Digital Facility Modelling using standardized Building Information Models (BIM)”. The digital modelling element of this project examined the potential of building information models for Facility Management focusing on the following areas: • The re-usability of building information for FM purposes • BIM as an Integrated information model for facility management • Extendibility of the BIM to cope with business specific requirements • Commercial facility management software using standardised building information models • The ability to add (organisation specific) intelligence to the model • A roadmap for SOH to adopt BIM for FM The project has established that BIM – building information modelling - is an appropriate and potentially beneficial technology for the storage of integrated building, maintenance and management data for SOH. Based on the attributes of a BIM, several advantages can be envisioned: consistency in the data, intelligence in the model, multiple representations, source of information for intelligent programs and intelligent queries. The IFC – open building exchange standard – specification provides comprehensive support for asset and facility management functions, and offers new management, collaboration and procurement relationships based on sharing of intelligent building data. The major advantages of using an open standard are: information can be read and manipulated by any compliant software, reduced user “lock in” to proprietary solutions, third party software can be the “best of breed” to suit the process and scope at hand, standardised BIM solutions consider the wider implications of information exchange outside the scope of any particular vendor, information can be archived as ASCII files for archival purposes, and data quality can be enhanced as the now single source of users’ information has improved accuracy, correctness, currency, completeness and relevance. SOH current building standards have been successfully drafted for a BIM environment and are confidently expected to be fully developed when BIM is adopted operationally by SOH. There have been remarkably few technical difficulties in converting the House’s existing conventions and standards to the new model based environment. This demonstrates that the IFC model represents world practice for building data representation and management (see Sydney Opera House – FM Exemplar Project Report Number 2005-001-C-3, Open Specification for BIM: Sydney Opera House Case Study). Availability of FM applications based on BIM is in its infancy but focussed systems are already in operation internationally and show excellent prospects for implementation systems at SOH. In addition to the generic benefits of standardised BIM described above, the following FM specific advantages can be expected from this new integrated facilities management environment: faster and more effective processes, controlled whole life costs and environmental data, better customer service, common operational picture for current and strategic planning, visual decision-making and a total ownership cost model. Tests with partial BIM data – provided by several of SOH’s current consultants – show that the creation of a SOH complete model is realistic, but subject to resolution of compliance and detailed functional support by participating software applications. The showcase has demonstrated successfully that IFC based exchange is possible with several common BIM based applications through the creation of a new partial model of the building. Data exchanged has been geometrically accurate (the SOH building structure represents some of the most complex building elements) and supports rich information describing the types of objects, with their properties and relationships.
Resumo:
Abstract. For interactive systems, recognition, reproduction, and generalization of observed motion data are crucial for successful interaction. In this paper, we present a novel method for analysis of motion data that we refer to as K-OMM-trees. K-OMM-trees combine Ordered Means Models (OMMs) a model-based machine learning approach for time series with an hierarchical analysis technique for very large data sets, the K-tree algorithm. The proposed K-OMM-trees enable unsupervised prototype extraction of motion time series data with hierarchical data representation. After introducing the algorithmic details, we apply the proposed method to a gesture data set that includes substantial inter-class variations. Results from our studies show that K-OMM-trees are able to substantially increase the recognition performance and to learn an inherent data hierarchy with meaningful gesture abstractions.
Resumo:
Creative Statement: “There are those who see Planet Earth as a gigantic living being, one that feeds and nurtures humanity and myriad other species – an entity that must be cared for. Then there are those who see it as a rock full of riches to be pilfered heedlessly in a short-term quest for over-abundance. This ‘cradle to grave’ mentality, it would seem, is taking its toll (unless you’re a virulent disbeliever in climate change). Why not, ask artists Priscilla Bracks and Gavin Sade, take a different approach? To this end they have set out on a near impossible task; to visualise the staggering quantity of carbon produced by Australia every year. Their eerie, glowing plastic cube resembles something straight out of Dr Who or The X Files. And, like the best science fiction, it has technical realities at its heart. Every One, Every Day tangibly illustrates our greenhouse gas output – its 27m3 volume is approximately the amount of green-house gas emitted per capita, daily. Every One, Every Dayis lit by an array of LED’s displaying light patterns representing energy use generated by data from the Australian Energy Market. Every One, Every Day was formed from recycled, polyethylene – used milk bottles – ‘lent’ to the artists by a Visy recycling facility. At the end of the Vivid Festival this plastic will be returned to Visy, where it will re-enter the stream of ‘technical nutrients.’ Could we make another world? One that emulates the continuing cycles of nature? One that uses our ‘technical nutrients’ such as plastic and steel in continual cycles, just like a deciduous tree dropping leaves to compost itself and keep it’s roots warm and moist?” (Ashleigh Crawford. Melbourne – April, 2013) Artistic Research Statement: The research focus of this work is on exploring how to represent complex statistics and data at a human scale, and how produce a work where a large percentage of the materials could be recycled. The surface of Every One, Every Day is clad in tiles made from polyethylene, from primarily recycled milk bottles, ‘lent’ to the artists by the Visy recycling facility in Sydney. The tiles will be returned to Visy for recycling. As such the work can be viewed as an intervention in the industrial ecology of polyethylene, and in the process demonstrates how to sustain cycles of technical materials – by taking the output of a recycling facility back to a manufacturer to produce usable materials. In terms of data visualisation, Every One, Every Day takes the form of a cube with a volume of 27 cubic meters. The annual per capita emissions figures for Australia are cited as ranging between 18 to 25 tons. Assuming the lower figure, 18tons per capital annually, the 27 cubic meters represents approximately one day per capita of CO2 emissions – where CO2 is a gas at 15C and 1 atmosphere of pressure. The work also explores real time data visualisation by using an array of 600 controllable LEDs inside the cube. Illumination patterns are derived from a real time data from the Australian Energy Market, using the dispatch interval price and demand graph for New South Wales. The two variables of demand and price are mapped to properties of the illumination - hue, brightness, movement, frequency etc. The research underpinning the project spanned industrial ecology to data visualization and public art practices. The result is that Every One, Every Day is one of the first public artworks that successfully bring together materials, physical form, and real time data representation in a unified whole.
Resumo:
This chapter addresses opportunities for problem posing in developing young children’s statistical literacy, with a focus on student-directed investigations. Although the notion of problem posing has broadened in recent years, there nevertheless remains limited research on how problem posing can be integrated within the regular mathematics curriculum, especially in the areas of statistics and probability. The chapter first reviews briefly aspects of problem posing that have featured in the literature over the years. Consideration is next given to the importance of developing children’s statistical literacy in which problem posing is an inherent feature. Some findings from a school playground investigation conducted in four, fourth-grade classes illustrate the different ways in which children posed investigative questions, how they made predictions about their outcomes and compared these with their findings, and the ways in which they chose to represent their findings.
Resumo:
Bioacoustic data can provide an important base for environmental monitoring. To explore a large amount of field recordings collected, an automated similarity search algorithm is presented in this paper. A region of an audio defined by frequency and time bounds is provided by a user; the content of the region is used to construct a query. In the retrieving process, our algorithm will automatically scan through recordings to search for similar regions. In detail, we present a feature extraction approach based on the visual content of vocalisations – in this case ridges, and develop a generic regional representation of vocalisations for indexing. Our feature extraction method works best for bird vocalisations showing ridge characteristics. The regional representation method allows the content of an arbitrary region of a continuous recording to be described in a compressed format.
Using Agents for Mining Maintenance Data while interacting in 3D Objectoriented Virtual Environments
Resumo:
This report demonstrates the development of: (a) object-oriented representation to provide 3D interactive environment using data provided by Woods Bagot; (b) establishing basis of agent technology for mining building maintenance data, and (C) 3D interaction in virtual environments using object-oriented representation. Applying data mining over industry maintenance database has been demonstrated in the previous report.
Resumo:
The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.
Resumo:
Abstract With the phenomenal growth of electronic data and information, there are many demands for the development of efficient and effective systems (tools) to perform the issue of data mining tasks on multidimensional databases. Association rules describe associations between items in the same transactions (intra) or in different transactions (inter). Association mining attempts to find interesting or useful association rules in databases: this is the crucial issue for the application of data mining in the real world. Association mining can be used in many application areas, such as the discovery of associations between customers’ locations and shopping behaviours in market basket analysis. Association mining includes two phases. The first phase, called pattern mining, is the discovery of frequent patterns. The second phase, called rule generation, is the discovery of interesting and useful association rules in the discovered patterns. The first phase, however, often takes a long time to find all frequent patterns; these also include much noise. The second phase is also a time consuming activity that can generate many redundant rules. To improve the quality of association mining in databases, this thesis provides an alternative technique, granule-based association mining, for knowledge discovery in databases, where a granule refers to a predicate that describes common features of a group of transactions. The new technique first transfers transaction databases into basic decision tables, then uses multi-tier structures to integrate pattern mining and rule generation in one phase for both intra and inter transaction association rule mining. To evaluate the proposed new technique, this research defines the concept of meaningless rules by considering the co-relations between data-dimensions for intratransaction-association rule mining. It also uses precision to evaluate the effectiveness of intertransaction association rules. The experimental results show that the proposed technique is promising.