410 resultados para DNA vaccine delivery

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human immunodeficiency virus type 1 (HIV-1) subtype C is the predominant HIV in southern Africa, and is the target of a number of recent vaccine candidates. It has been proposed that a heterologous prime/boost vaccination strategy may result in stronger, broader and more prolonged immune responses. Since HIV-1 Gag Pr55 polyprotein can assemble into virus-like particles (VLPs) which have been shown to induce a strong cellular immune response in animals, we showed that a typical southern African subtype C Pr55 protein expressed in insect cells via recombinant baculovirus could form VLPs. We then used the baculovirus-produced VLPs as a boost to a subtype C HIV-1 gag DNA prime vaccination in mice. This study shows that a low dose of HIV-1 subtype C Gag VLPs can significantly boost the immune response to a single subtype C gag DNA inoculation in mice. These results suggest a possible vaccination regimen for humans. © 2004 SGM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A DNA vaccine expressing human immunodeficiency virus type 1 (HIV-1) southern African subtype C Gag (pTHGag) and a recombinant baculovirus Pr55gag virus-like particle prepared using a subtype C Pr55gag protein (Gag VLP) was tested in a prime-boost inoculation regimen in Chacma baboons. The response of five baboons to Gag peptides in a gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay after three pTHGag immunizations ranged from 100 to 515 spot-forming units (s.f.u.) per 106 peripheral blood mononuclear cells (PBMCs), whilst the response of two baboons to the Gag VLP vaccine ranged from 415 to 465 s.f.u. per 106 PBMCs. An increase in the Gag-specific response to a range of 775-3583 s.f.u. per 106 PBMCs was achieved by boosting with Gag VLPs the five baboons that were primed with pTHGag. No improvement in Gag responses was achieved in this prime-boost inoculation regimen by increasing the number of pTHGag inoculations to six. IFN-γ responses were mapped to several peptides, some of which have been reported to be targeted by PBMCs from HIV-1 subtype C-infected individuals. Gag VLPs, given as a single-modality regimen, induced a predominantly CD8+ T-cell IFN-γ response and interleukin-2 was a major cytokine within a mix of predominantly Th1 cytokines produced by a DNA-VLP prime-boost modality. The prime-boost inoculation regimen induced high serum p24 antibody titres in all baboons, which were several fold above that induced by the individual vaccines. Overall, this study demonstrated that these DNA prime/VLP boost vaccine regimens are highly immunogenic in baboons, inducing high-magnitude and broad multifunctional responses, providing support for the development of these products for clinical trials. © 2008 SGM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to elicit cross-neutralizing antibodies makes human papillomavirus (HPV) L2 capsid protein a possible HPV vaccine. We examined and compared the humoral response of mice immunized with a HPV-16 L2 DNA vaccine or with HPV-16 L2 protein. The L2 DNA vaccine elicited a non-neutralizing antibody response unlike the L2 protein. L2 DNA vaccination suppressed the growth of L2-expressing C3 tumor cells, which is a T cell mediated effect, demonstrating that the lack of non-neutralizing antibody induction by L2 DNA was not caused by lack of T cell immunogenicity of the construct. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new strategy for rapidly selecting and testing genetic vaccines has been developed, in which a whole genome library is cloned into a bacteriophage λ ZAP Express vector which contains both prokaryotic (Plac) and eukaryotic (PCMV) promoters upstream of the insertion site. The phage library is plated on Escherichia coli cells, immunoblotted, and probed with hyperimmune and/or convalescent-phase antiserum to rapidly identify vaccine candidates. These are then plaque purified and grown as liquid lysates, and whole bacteriophage particles are then used directly to immunize the host, following which PCMV-driven expression of the candidate vaccine gene occurs. In the example given here, a semirandom genome library of the bovine pathogen Mycoplasma mycoides subsp. mycoides small colony (SC) biotype was cloned into λ ZAP Express, and two strongly immunodominant clones, λ-A8 and λ-B1, were identified and subsequently tested for vaccine potential against M. mycoides subsp. mycoides SC biotype-induced mycoplasmemia. Sequencing and immunoblotting indicated that clone λ-A8 expressed an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible M. mycoides subsp. mycoides SC biotype protein with a 28-kDa apparent molecular mass, identified as a previously uncharacterized putative lipoprotein (MSC_0397). Clone λ-B1 contained several full-length genes from the M. mycoides subsp. mycoides SC biotype pyruvate dehydrogenase region, and two IPTG-independent polypeptides, of 29 kDa and 57 kDa, were identified on immunoblots. Following vaccination, significant anti-M. mycoides subsp. mycoides SC biotype responses were observed in mice vaccinated with clones λ-A8 and λ-B1. A significant stimulation index was observed following incubation of splenocytes from mice vaccinated with clone λ-A8 with whole live M. mycoides subsp. mycoides SC biotype cells, indicating cellular proliferation. After challenge, mice vaccinated with clone λ-A8 also exhibited a reduced level of mycoplasmemia compared to controls, suggesting that the MSC_0397 lipoprotein has a protective effect in the mouse model when delivered as a bacteriophage DNA vaccine. Bacteriophage-mediated immunoscreening using an appropriate vector system offers a rapid and simple technique for the identification and immediate testing of putative candidate vaccines from a variety of pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monash University in Australia has developed a new approach towards DNA vaccine development that has the potential to cut the time it takes to produce a vaccine from up to nine months to four weeks or less. The university has designed and filed a patent on a commercially viable, single-stage technology for manufacturing DNA molecules. The technology was used to produce malaria and measles DNA vaccines, which were tested to be homogeneous supercoiled DNA, free from RNA and protein contaminations and meeting FDA regulatory standards for DNA vaccines. The technique is based on customized, smart, polymeric, monolithic adsorbents that can purify DNA very rapidly. The design criteria of solid-phase adsorbent include rapid adsorption and desorption kinetics, physical composition, and adequate selectivity , capacity and recovery. The new show technology significantly improved binding capacities, higher recovery, drastically reduced use of buffers and processing time, less clogging, and higher yields of DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 19 kDa carboxyl-terminal fragment of merozoite surface protein 1 (MSP119) is a major component of the invasion-inhibitory response in individual immunity to malaria. A novel ultrasonic atomization approach for the formulation of biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles of malaria DNA vaccines encoding MSP119 is presented here. After condensing the plasmid DNA (pDNA) molecules with a cationic polymer polyethylenimine (PEI), a 40 kHz ultrasonic atomization frequency was used to formulate PLGA microparticles at a flow rate of 18 mL h1. High levels of gene expression and moderate cytotoxicity in COS-7 cells were achieved with the condensed pDNA at a nitrogen to phosphate (N/P) ratio of 20, thus demonstrating enhanced cellular uptake and expression of the transgene. The ability of the microparticles to convey pDNA was examined by characterizing the formulated microparticles. The microparticles displayed Z-average hydrodynamic diameters of 1.50-2.10 lm and zeta potentials of 17.8-23.2 mV. The encapsulation efficiencies were between 78 and 83%, and 76 and 85% of the embedded malaria pDNA molecules were released under physiological conditions in vitro. These results indicate that PLGA-mediated microparticles can be employed as potential gene delivery systems to antigen-presenting cells in the prevention of malaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An effective means of facilitating DNA vaccine delivery to antigen presenting cells is through biodegradable microspheres. Microspheres offer distinct advantages over other delivery technologies by providing release of DNA vaccine in its bioactive form in a controlled fashion. In this study, biodegradable poly(D,L-lactide-coglycolide) (PLGA) microspheres containing polyethylenimine (PEI) condensed plasmid DNA (pDNA) were prepared using a 40 kHz ultrasonic atomization system. Process synthesis parameters, which are important to the scale-up of microspheres that are suitable for nasal delivery (i.e., less than 20 μm), were studied. These parameters include polymer concentration; feed flowrate; volumetric ratio of polymer and pDNA-PEI (plasmid DNA-polyethylenimine) complexes; and nitrogen to phosphorous (N/P) ratio. PDNA encapsulation efficiencies were predominantly in the range 82-96%, and the mean sizes of the particle were between 6 and 15 μm. The ultrasonic synthesis method was shown to have excellent reproducibility. PEI affected morphology of the microspheres, as it induced the formation of porous particles that accelerate the release rate of pDNA. The PLGA microspheres displayed an in vitro release of pDNA of 95-99% within 30 days and demonstrated zero order release kinetics without an initial spike of pDNA. Agarose electrophoresis confirmed conservation of the supercoiled form of pDNA throughout the synthesis and in vitro release stages. It was concluded that ultrasonic atomization is an efficient technique to overcome the key obstacles in scaling-up the manufacture of encapsulated vaccine for clinical trials and ultimately, commercial applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA may take a leading role in a future generation of blockbuster therapeutics. DNA has inherent advantages over other biomolecules such as protein, RNA and virus-like particles including safety, production simplicity and higher stability at ambient temperatures. Vaccination is the principal measure for preventing influenza and reducing the impact of pandemics; however, vaccines take up to 8-9 months to produce, and the global production capacity is woefully low. With production times as short as 2 weeks, improved safety and stability, bioprocess engineering developments, and the ability to perform numerous therapeutic roles, DNA has the potential to meet the demands of emerging and existing diseases. DNA is experiencing sharp growths in demand as indicated by its use in gene therapy trials and DNA vaccine related patents. Of particular interest for therapeutic use is plasmid DNA (pDNA), a form of non-genomic DNA that makes use of cellular machinery to express proteins or antigens. The production stages of fermentation and downstream purification are considered in this article. Forward looking approaches to purifying and delivering DNA are reported, including affinity chromatography and nasal inhalation. The place that pDNA may take in the preparation for and protection against pandemics is considered. If DNA therapeutics and vaccines prove to be effective, the ultimate scale of production will be huge which shall require associated bioprocess engineering research and development for purification of this large, unique biomolecule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA vaccines or proteins are capable of inducing specific immunity; however, the translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein we demonstrate a composite microsphere formulation, composed of mesoporous silica spheres (MPS) and poly(d,l-lactide-co-glycolide) (PLGA), enables the controlled delivery of a prime-boost vaccine via the encapsulation of plasmid DNA (pDNA) and protein in different compartments. Method with modified dual-concentric-feeding needles attached to a 40 kHz ultrasonic atomizer was studied. These needles focus the flow of two different solutions, which passed through the ultrasonic atomizer. The process synthesis parameters, which are important to the scale-up of composite microspheres, were also studied. These parameters include polymer concentration, feed flowrate, and volumetric ratio of polymer and pDNA-PEI/MPS-BSA. This fabrication technique produced composite microspheres with mean D[4,3] ranging from 6 to 34 μm, depending upon the microsphere preparation. The resultant physical morphology of composite microspheres was largely influenced by the volumetric ratio of pDNA-PEI/MPS-BSA to polymer, and this was due to the precipitation of MPS at the surface of the microspheres. The encapsulation efficiencies were predominantly in the range of 93-98% for pDNA and 46-68% for MPS. In the in vitro studies, the pDNA and protein showed different release kinetics in a 40 day time frame. The dual-concentric-feeding in ultrasonic atomization was shown to have excellent reproducibility. It was concluded that this fabrication technique is an effective method to prepare formulations containing a heterologous prime-boost vaccine in a single delivery system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background A novel ultrasonic atomization approach for the formulation of biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles of a malaria DNA vaccine is presented. A 40 kHz ultrasonic atomization device was used to create the microparticles from a feedstock containing 5 volumes of 0.5% w/v PLGA in acetone and 1 volume of condensed DNA which was fed at a flow rate of 18ml h-1. The plasmid DNA vectors encoding a malaria protein were condensed with a cationic polymer before atomization. Results High levels of gene expression in vitro were observed in COS-7 cells transfected with condensed DNA at a nitrogen to phosphate (N/P) ratio of 10. At this N/P ratio, the condensed DNA exhibited a monodispersed nanoparticle size (Z-average diameter of 60.8 nm) and a highly positive zeta potential of 38.8mV. The microparticle formulations of malaria DNA vaccine were quality assessed and it was shown that themicroparticles displayed high encapsulation efficiencies between 82-96% and a narrow size distribution in the range of 0.8-1.9 μm. In vitro release profile revealed that approximately 82% of the DNA was released within 30 days via a predominantly diffusion controlledmass transfer system. Conclusions This ultrasonic atomization technique showed excellent particle size reproducibility and displayed potential as an industrially viable approach for the formulation of controlled release particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleic acid molecules are championing a new generation of reverse engineered biopharmaceuticals. In terms of potential application in gene medicine, plasmid DNA (pDNA) vectors have exceptional therapeutic and immunological profiles as they are free from safety concerns associated with viral vectors, display non-toxicity and are simpler to develop. This review addresses the potential applications of pDNA molecules in vaccine design/development and gene therapy via recombinant DNA technology as well as a staged delivery mechanism for the introduction of plasmid-borne gene to target cells via the nasal route.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In responding to future influenza pandemics and other infectious agents, plasmid DNA overcomes many of the limitations of conventional vaccine production approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maturing of the biotechnology industry and a focus on productivity has seen a shift from discovery science to small-scale bench-top research to higher productivity, large scale production. Health companies are aggressively expanding their biopharmaceutical interests, an expansion which is facilitated by biochemical and bioprocess engineering. An area of continuous growth is vaccines. Vaccination will be a key intervention in the case of an influenza pandemic. The global manufacturing capacity for fast turn around vaccines is currently woefully inadequate at around 300 million shots. As the prevention of epidemics requires > 80 % vaccination, in theory the world should currently be aiming for the ability to produce around 5.3 billion vaccines. Presented is a production method for the creation of a fast turn around DNA vaccine. A DNA vaccine could have a production time scale of as little as two weeks. This process has been harnessed into a pilot scale production system for the creation of a pre-clinical grade malaria vaccine in a collaborative project with the Coppel Lab, Department of Microbiology, Monash University. In particular, improvements to the fermentation, chromatography and delivery stages will be discussed. Consideration will then be given as to how the fermentation stage affects the mid and downstream processing stages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Particulates with specific sizes and characteristics can induce potent immune responses by promoting antigen uptake of appropriate immuno-stimulatory cell types. Magnetite (Fe3O4) nanoparticles have shown many potential bioapplications due to their biocompatibility and special characteristics. Here, superparamagnetic Fe3O4 nanoparticles (SPIONs) with high magnetization value (70emug-1) were stabilized with trisodium citrate and successfully conjugated with a model antigen (ovalbumin, OVA) via N,N'-carbonyldiimidazole (CDI) mediated reaction, to achieve a maximum conjugation capacity at approximately 13μgμm-2. It was shown that different mechanisms governed the interactions between the OVA molecules and magnetite nanoparticles at different pH conditions. We evaluated as-synthesized SPION against commercially available magnetite nanoparticles. The cytotoxicity of these nanoparticles was investigated using mammalian cells. The reported CDI-mediated reaction can be considered as a potential approach in conjugating biomolecules onto magnetite or other biodegradable nanoparticles for vaccine delivery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Achieving the combination of delayed and immediate release of a vaccine from a delivery device without applying external triggers remains elusive in implementing single administration vaccination strategies. Here a means of vaccine delivery is presented, which exploits osmosis to trigger delayed burst release of an active compound. Poly(-caprolactone) capsules of 2 mm diameter were prepared by dip-coating, and their burst pressure and release characteristics were evaluated. Burst pressures (in bar) increased with wall thickness (t in mm) following Pburst = 131.t + 3.4 (R2 = 0.93). Upon immersion in PBS, glucose solution-filled capsules burst after 8.7 ± 2.9 days. Copolymers of hydrophobic  -caprolactone and hydrophilic polyethylene glycol were synthesized and their physico-chemical properties were assessed. With increasing hydrophilic content, the copolymer capsules showed increased water uptake rates and maximum weight increase, while the burst release was earlier: 5.6 ± 2.0 days and 1.9 ± 0.2 days for 5 and 10 wt% polyethylene glycol, respectively. The presented approach enables the reproducible preparation of capsules with high versatility in materials and properties, while these vaccine delivery vehicles can be prepared separately from, and independently of the active compound.