54 resultados para DIAMOND
em Queensland University of Technology - ePrints Archive
Resumo:
This article observes a paradox in the recent history of the Special Broadcasting Service. It is argued that, in contrast to the Australian Broadcasting Corporation, the role and general direction of SBS were not extensively debated as part of the ‘culture wars’ that occurred during the years of the Howard government. While that made SBS a less fraught space during that period, it may now be a factor in the comparative lack of support being given by the Rudd Labor government to SBS in comparison with the ABC, as some of the ‘special’ status of SBS has been blunted by its drift towards more mainstream programming and a mixed economy of commercial advertising, as well as government funding.
Resumo:
Experimentally, hydrogen-free diamond-like carbon (DLC) films were assembled by means of pulsed laser deposition (PLD), where energetic small-carbon-clusters were deposited on the substrate. In this paper, the chemisorption of energetic C2 and C10 clusters on diamond (001)-( 2×1) surface was investigated by molecular dynamics simulation. The influence of cluster size and the impact energy on the structure character of the deposited clusters is mainly addressed. The impact energy was varied from a few tens eV to 100 eV. The chemisorption of C10 was found to occur only when its incident energy is above a threshold value ( E th). While, the C2 cluster was easily to adsorb on the surface even at much lower incident energy. With increasing the impact energy, the structures of the deposited C2 and C10 are different from the free clusters. Finally, the growth of films synthesized by energetic C2 and C10 clusters were simulated. The statistics indicate the C2 cluster has high probability of adsorption and films assembled of C2 present slightly higher SP3 fraction than that of C10-films, especially at higher impact energy and lower substrate temperature. Our result supports the experimental findings. Moreover, the simulation underlines the deposition mechanism at atomic scale.
Resumo:
In this paper, the initial stage of films assembled by energetic C36 fullerenes on diamond (001)–(2 × 1) surface at low-temperature was investigated by molecular dynamics simulation using the Brenner potential. The incident energy was first uniformly distributed within an energy interval 20–50 eV, which was known to be the optimum energy range for chemisorption of single C36 on diamond (001) surface. More than one hundred C36 cages were impacted one after the other onto the diamond surface by randomly selecting their orientation as well as the impact position relative to the surface. The growth of films was found to be in three-dimensional island mode, where the deposited C36 acted as building blocks. The study of film morphology shows that it retains the structure of a free C36 cage, which is consistent with Low Energy Cluster Beam Deposition (LECBD) experiments. The adlayer is composed of many C36-monomers as well as the covalently bonded C36 dimers and trimers which is quite different from that of C20 fullerene-assembled film, where a big polymerlike chain was observed due to the stronger interaction between C20 cages. In addition, the chemisorption probability of C36 fullerenes is decreased with increasing coverage because the interaction between these clusters is weaker than that between the cluster and the surface. When the incident energy is increased to 40–65 eV, the chemisorption probability is found to increased and more dimers and trimers as well as polymerlike-C36 were observed on the deposited films. Furthermore, C36 film also showed high thermal stability even when the temperature was raised to 1500 K.
Resumo:
The impact induced chemisorption of hydrocarbon molecules (CH3 and CH2) on H-terminated diamond (001)-(2x1) surface was investigated by molecular dynamics simulation using the many-body Brenner potential. The deposition dynamics of the CH3 radical at impact energies of 0.1-50 eV per molecule was studied and the energy threshold for chemisorption was calculated. The impact-induced decomposition of hydrogen atoms and the dimer opening mechanism on the surface was investigated. Furthermore, the probability for dimer opening event induced by chemisorption of CH, was simulated by randomly varying the impact position as well as the orientation of the molecule relative to the surface. Finally, the energetic hydrocarbons were modeled, slowing down one after the other to simulate the initial fabrication of diamond-like carbon (DLC) films. The structure characteristic in synthesized films with different hydrogen flux was studied. Our results indicate that CH3, CH2 and H are highly reactive and important species in diamond growth. Especially, the fraction of C-atoms in the film having sp(3) hybridization will be enhanced in the presence of H atoms, which is in good agreement with experimental observations. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, the deposition of C-20 fullerenes on a diamond (001)-(2x1) surface and the fabrication of C-20 thin film at 100 K were investigated by a molecular dynamics (MD) simulation using the many-body Brenner bond order potential. First, we found that the collision dynamic of a single C-20 fullerene on a diamond surface was strongly dependent on its impact energy. Within the energy range 10-45 eV, the C-20 fullerene chemisorbed on the surface retained its free cage structure. This is consistent with the experimental observation, where it was called the memory effect in "C-20-type" films [P. Melion , Int. J. Mod. B 9, 339 (1995); P. Milani , Cluster Beam Synthesis of Nanostructured Materials (Springer, Berlin, 1999)]. Next, more than one hundred C-20 (10-25 eV) were deposited one after the other onto the surface. The initial growth stage of C-20 thin film was observed to be in the three-dimensional island mode. The randomly deposited C-20 fullerenes stacked on diamond surface and acted as building blocks forming a polymerlike structure. The assembled film was also highly porous due to cluster-cluster interaction. The bond angle distribution and the neighbor-atom-number distribution of the film presented a well-defined local order, which is of sp(3) hybridization character, the same as that of a free C-20 cage. These simulation results are again in good agreement with the experimental observation. Finally, the deposited C-20 film showed high stability even when the temperature was raised up to 1500 K.
Resumo:
The adsorption of low-energy C20 isomers on diamond (0 0 1)–(2×1) surface was investigated by molecular dynamics simulation using the Brenner potential. The energy dependence of chemisorption characteristic was studied. We found that there existed an energy threshold for chemisorption of C20 to occur. Between 10 and 20 eV, the C20 fullerene has high probability of chemisorption and the adsorbed cage retains its original structure, which supports the experimental observations of memory effects. However, the structures of the adsorbed bowl and ring C20 were different from their original ones. In this case, the local order in cluster-assembled films would be different from the free clusters.
Resumo:
The deposition of hyperthermal CH3 on diamond (001)-(2×1) surface at room temperature has been studied by means of molecular dynamics simulation using the many-body hydrocarbon potential. The energy threshold effect has been observed. That is, with fixed collision geometry, chemisorption can occur only when the incident energy of CH3 is above a critical value (Eth). Increasing the incident energy, dissociation of hydrogen atoms from the incident molecule was observed. The chemisorption probability of CH3 as a function of its incident energy was calculated and compared with that of C2H2. We found that below 10 eV, the chemisorption probability of C2H2 is much lower than that of CH3 on the same surface. The interesting thing is that it is even lower than that of CH3 on a hydrogen covered surface at the same impact energy. It indicates that the reactive CH3 molecule is the more important species than C2H2 in diamond synthesis at low energy, which is in good agreement with the experimental observation.
Resumo:
In this paper, the collision of a C36, with D6h symmetry, on diamond (001)-(/2×1) surface was investigated using molecular dynamics (MD) simulation based on the semi-empirical Brenner potential. The incident kinetic energy of the C36 ranges from 20 to 150 eV per cluster. The collision dynamics was investigated as a function of impact energy Ein. The C36 cluster was first impacted towards the center of two dimers with a fixed orientation. It was found that when Ein was lower than 30 eV, C36 bounces off the surface without breaking up. Increasing Ein to 30-45 eV, bonds were formed between C36 and surface dimer atoms, and the adsorbed C36 retained its original free-cluster structure. Around 50-60 eV, the C36 rebounded from the surface with cage defects. Above 70 eV, fragmentation both in the cluster and on the surface was observed. Our simulation supported the experimental findings that during low-energy cluster beam deposition small fullerenes could keep their original structure after adsorption (i.e. the memory effect), if Ein is within a certain range. Furthermore, we found that the energy threshold for chemisorption is sensitive to the orientation of the incident C36 and its impact position on the asymmetric surface.
Resumo:
The electrochemical reduction of TCNQ to TCNQ•- in acetonitrile in the presence of [Cu(MeCN)4]+ has been undertaken at boron-doped diamond (BDD) and indium tin oxide (ITO) electrodes. The nucleation and growth process at BDD is similar to that reported previously at metal electrodes. At an ITO electrode, the electrocrystallization of more strongly adhered, larger, branched, needle-shaped phase I CuTCNQ crystals is detected under potential step conditions and also when the potential is cycled over the potential range of 0.7 to −0.1 V versus Ag/AgCl (3 M KCl). Video imaging can be used at optically transparent ITO electrodes to monitor the growth stage of the very large branched crystals formed during the course of electrochemical experiments. Both in situ video imaging and ex situ X-ray diffraction and scanning electron microscopy (SEM) data are consistent with the nucleation of CuTCNQ taking place at a discrete number of preferred sites on the ITO surface. At BDD electrodes, ex situ optical images show that the preferential growth of CuTCNQ occurs at the more highly conducting boron-rich areas of the electrode, within which there are preferred sites for CuTCNQ formation.
Resumo:
Indium tin-oxide (ITO) and polycrystalline boron-doped diamond (BDD) have been examined in detail using the scanning electrochemical microscopy technique in feedback mode. For the interrogation of electrodes made from these materials, the choice of mediator has been varied. Using Ru(CN) 4− 6 (aq), ferrocene methanol (FcMeOH), Fe(CN) 3− 6 (aq) and Ru(NH 3) 3+ 6 (aq), approach curve experiments have been performed, and for purposes of comparison, calculations of the apparent heterogeneous electron transfer rates (k app) have been made using these data. In general, it would appear that values of k app are affected mainly by the position of the mediator reversible potential relative to the relevant semiconductor band edge (associated with majority carriers). For both the ITO (n type) and BDD (p type) electrodes, charge transfer is impeded and values are very low when using FcMeOH and Fe(CN) 3− 6 (aq) as mediators, and the use of Ru(NH 3) 3+ 6(aq) results in the largest value of k app. With ITO, the surface is chemically homogeneous and no variation is observed for any given mediator. Data is also presented where the potential of the ITO electrode is fixed using a ratio of the mediators Fe(CN) 3− 6(aq) and Fe(CN) 4− 6(aq). In stark contrast, the BDD electrode is quite the opposite and a range of k app values are observed for all mediators depending on the position on the surface. Both electrode surfaces are very flat and very smooth, and hence, for BDD, variations in feedback current imply a variation in the electrochemical activity. A comparison of the feedback current where the substrate is biased and unbiased shows a surprising degree of proportionality.