794 resultados para Cytokines, Pneumonia, Children, M. pneumoniae
em Queensland University of Technology - ePrints Archive
Resumo:
Perfluoroalkyl acids (PFAAs) are a group of common chemicals that ubiquitously exist in wildlife and humans. Experimental data suggest that they may alter T-lymphocyte functioning in situ by preferentially enhancing the development of T-helper 2 (TH2)- and inhibiting TH1-lymphocyte development and might increase allergic inflammation, but few human studies have been conducted. To evaluate the association between serum PFAAs concentrations and T-lymphocyte-related immunological markers of asthma in children, and further to assess whether gender modified this association, 231 asthmatic children and 225 non-asthmatic control children from Northern Taiwan were recruited into the Genetic and Biomarker study for Childhood Asthma. Serum concentrations of ten PFAAs and levels of TH1 [interferon (IFN)-γ, interleukin (IL)-2] and TH2 (IL-4 and IL-5) cytokines were measured. The results showed that asthmatics had significantly higher serum PFAAs concentrations compared with the healthy controls. When stratified by gender, a greater number of significant associations between PFAAs and asthma outcomeswere found in males than in females. Among males, adjusted odds ratios for asthma among those with the highest versus lowest quartile of PFAAs exposure ranged from 2.59 (95% CI: 1.14, 5.87) for the perfluorobutanesulfonate (PFBS) to 4.38 (95% CI: 2.02, 9.50) for perfluorooctanesulfonate (PFOS); and serum PFAAs were associated positively with TH2 cytokines and inversely with TH1 cytokines among male asthmatics. Among females, no significant associations between PFAAs and TH2 cytokines could be detected. In conclusion, increased serum PFAAs levels may promote TH cell dysregulation and alter the availability of key TH1 and TH2 cytokines, ultimately contributing to the development of asthma that may differentially impact males to a greater degree than females. These results have potential relevance in asthma prevention.
Resumo:
Despite the importance of paediatric pneumonia as a cause of short and long-term morbidity and mortality worldwide, a reliable gold standard for its diagnosis remains elusive. The utility of clinical, microbiological and radiological diagnostic approaches varies widely within and between populations and is heavily dependent on the expertise and resources available in various settings. Here we review the role of radiology in the diagnosis of paediatric pneumonia. Chest radiographs (CXRs) are the most widely employed test, however, they are not indicated in ambulatory settings, cannot distinguish between viral and bacterial infections and have a limited role in the ongoing management of disease. A standardised definition of alveolar pneumonia on a CXR exists for epidemiological studies targeting bacterial pneumonias but it should not be extrapolated to clinical settings. Radiography, computed tomography and to a lesser extent ultrasonography and magnetic resonance imaging play an important role in complicated pneumonias but there are limitations that preclude their use as routine diagnostic tools. Large population-based studies are needed in different populations to address many of the knowledge gaps in the radiological diagnosis of pneumonia in children, however, the feasibility of such studies is an important barrier.
Resumo:
The effect of temperature on childhood pneumonia in subtropical regions is largely unknown so far. This study examined the impact of temperature on childhood pneumonia in Brisbane, Australia. A quasi-Poisson generalized linear model combined with a distributed lag non linear model was used to quantify the main effect of temperature on emergency department visits (EDVs) for childhood pneumonia in Brisbane from 2001 to 2010. The model residuals were checked to identify added effects due to heat waves or cold spells. Both high and low temperatures were associated with an increase in EDVs for childhood pneumonia. Children aged 2–5 years, and female children were particularly vulnerable to the impacts of heat and cold, and Indigenous children were sensitive to heat. Heat waves and cold spells had significant added effects on childhood pneumonia, and the magnitude of these effects increased with intensity and duration. There were changes over time in both the main and added effects of temperature on childhood pneumonia. Children, especially those female and Indigenous, should be particularly protected from extreme temperatures. Future development of early warning systems should take the change over time in the impact of temperature on children’s health into account.
Resumo:
Objective To determine the burden of hospitalised, radiologically confirmed pneumonia (World Health Organization protocol) in Northern Territory Indigenous children. Design, setting and participants Historical, observational study of all hospital admissions for any diagnosis of NT resident Indigenous children, aged between >= 29 days and < 5 years, 1 April 1997 to 31 March 2005. Intervention All chest radiographs taken during these admissions, regardless of diagnosis, were assessed for pneumonia in accordance with the WHO protocol. Main outcome measure The primary outcome was endpoint consolidation (dense fluffy consolidation [alveolar infiltrate] of a portion of a lobe or the entire lung) present on a chest radiograph within 3 days of hospitalisation. Results We analysed data on 24 115 hospitalised episodes of care for 9492 children and 13 683 chest radiographs. The average annual cumulative incidence of endpoint consolidation was 26.6 per 1000 population per year (95% Cl, 25.3-27.9); 57.5 per 1000 per year in infants aged 1-11 months, 38.3 per 1000 per year in those aged 12-23 months, and 13.3 per 1000 per year in those aged 24-59 months. In all age groups, rates of endpoint consolidation in children in the arid southern region of NT were about twice that of children in the tropical northern region. Conclusion The rates of severe pneumonia in hospitalised NT Indigenous children are among the highest reported in the world. Reducing this unacceptable burden of disease should be a national health priority.
Resumo:
Background A reliable standardized diagnosis of pneumonia in children has long been difficult to achieve. Clinical and radiological criteria have been developed by the World Health Organization (WHO), however, their generalizability to different populations is uncertain. We evaluated WHO defined chest radiograph (CXRs) confirmed alveolar pneumonia in the clinical context in Central Australian Aboriginal children, a high risk population, hospitalized with acute lower respiratory illness (ALRI). Methods CXRs in children (aged 1-60 months) hospitalized and treated with intravenous antibiotics for ALRI and enrolled in a randomized controlled trial (RCT) of Vitamin A/Zinc supplementation were matched with data collected during a population-based study of WHO-defined primary endpoint pneumonia (WHO-EPC). These CXRs were reread by a pediatric pulmonologist (PP) and classified as pneumonia-PP when alveolar changes were present. Sensitivities, specificities, positive and negative predictive values (PPV, NPV) for clinical presentations were compared between WHO-EPC and pneumonia-PP. Results Of the 147 episodes of hospitalized ALRI, WHO-EPC was significantly less commonly diagnosed in 40 (27.2%) compared to pneumonia-PP (difference 20.4%, 95% CI 9.6-31.2, P < 0.001). Clinical signs on admission were poor predictors for both pneumonia-PP and WHO-EPC; the sensitivities of clinical signs ranged from a high of 45% for tachypnea to 5% for fever + tachypnea + chest-indrawing. The PPV range was 40-20%, respectively. Higher PPVs were observed against the pediatric pulmonologist's diagnosis compared to WHO-EPC. Conclusions WHO-EPC underestimates alveolar consolidation in a clinical context. Its use in clinical practice or in research designed to inform clinical management in this population should be avoided. Pediatr Pulmonol. 2012; 47:386-392. (C) 2011 Wiley Periodicals, Inc.
Resumo:
This research investigated the use of DNA fingerprinting to characterise the bacteria Streptococcus pneumoniae or pneumococcus, and hence gain insight into the development of new vaccines or antibiotics. Different bacterial DNA fingerprinting methods were studied, and a novel method was developed and validated, which characterises different cell coatings that pneumococci produce. This method was used to study the epidemiology of pneumococci in Queensland before and after the introduction of the current pneumococcal vaccine. This study demonstrated that pneumococcal disease is highly prevalent in children under four years, that the bacteria can `switch' its cell coating to evade the vaccine, and that some DNA fingerprinting methods are more discriminatory than others. This has an impact on understanding which strains are more prone to cause invasive disease. Evidence of the excellent research findings have been published in high impact internationally refereed journals.
Resumo:
Few studies have formally examined the relationship between meteorological factors and the incidence of child pneumonia in the tropics, despite the fact that most child pneumonia deaths occur there. We examined the association between four meteorological exposures (rainy days, sunshine, relative humidity, temperature) and the incidence of clinical pneumonia in young children in the Philippines using three time-series methods: correlation of seasonal patterns, distributed lag regression, and case-crossover. Lack of sunshine was most strongly associated with pneumonia in both lagged regression [overall relative risk over the following 60 days for a 1-h increase in sunshine per day was 0·67 (95% confidence interval (CI) 0·51–0·87)] and case-crossover analysis [odds ratio for a 1-h increase in mean daily sunshine 8–14 days earlier was 0·95 (95% CI 0·91–1·00)]. This association is well known in temperate settings but has not been noted previously in the tropics. Further research to assess causality is needed.
Resumo:
Despite Australia being one of the wealthiest countries of the world, Australian Indigenous children have a health status and social circumstance comparable to developing countries. Indigenous infants have 10 times the mortality rate for respiratory conditions. The lower respiratory infection (LRI) rate in Australian Indigenous children is at least as high as that of children in developing countries; the frequency of hospitalisations of Indigenous infants is triple that of non-Indigenous Australian infants (201.7 vs. 62.6/1000, respectively). While Indigenous Australian children have many risk factors for LRIs described in developing countries, there is little specific data, and hence, evidence-based intervention points are yet to be identified. Efficacy of conjugate vaccines for common bacterial causes of pneumonia has been less marked in Indigenous children than that documented overseas. Gaps in the management and prevention of disease are glaring. Given the burden of LRI in Indigenous children and the association with long-term respiratory dysfunction, LRIs should be addressed as a matter of priority.
Resumo:
Background Recurrent protracted bacterial bronchitis (PBB), chronic suppurative lung disease (CSLD) and bronchiectasis are characterised by a chronic wet cough and are important causes of childhood respiratory morbidity globally. Haemophilus influenzae and Streptococcus pneumoniae are the most commonly associated pathogens. As respiratory exacerbations impair quality of life and may be associated with disease progression, we will determine if the novel 10-valent pneumococcal-Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) reduces exacerbations in these children. Methods A multi-centre, parallel group, double-blind, randomised controlled trial in tertiary paediatric centres from three Australian cities is planned. Two hundred six children aged 18 months to 14 years with recurrent PBB, CSLD or bronchiectasis will be randomised to receive either two doses of PHiD-CV or control meningococcal (ACYW(135)) conjugate vaccine 2 months apart and followed for 12 months after the second vaccine dose. Randomisation will be stratified by site, age (<6 years and >= 6 years) and aetiology (recurrent PBB or CSLD/bronchiectasis). Clinical histories, respiratory status (including spirometry in children aged >= 6 years), nasopharyngeal and saliva swabs, and serum will be collected at baseline and at 2, 3, 8 and 14 months post-enrolment. Local and systemic reactions will be recorded on daily diaries for 7 and 30 days, respectively, following each vaccine dose and serious adverse events monitored throughout the trial. Fortnightly, parental contact will help record respiratory exacerbations. The primary outcome is the incidence of respiratory exacerbations in the 12 months following the second vaccine dose. Secondary outcomes include: nasopharyngeal carriage of H. influenzae and S. pneumoniae vaccine and vaccine-related serotypes; systemic and mucosal immune responses to H. influenzae proteins and S. pneumoniae vaccine and vaccine-related serotypes; impact upon lung function in children aged >= 6 years; and vaccine safety. Discussion As H. influenzae is the most common bacterial pathogen associated with these chronic respiratory diseases in children, a novel pneumococcal conjugate vaccine that also impacts upon H. influenzae and helps prevent respiratory exacerbations would assist clinical management with potential short- and long-term health benefits. Our study will be the first to assess vaccine efficacy targeting H. influenzae in children with recurrent PBB, CSLD and bronchiectasis.
Resumo:
Background Australian Indigenous children are the only population worldwide to receive the 7-valent pneumococcal conjugate vaccine (7vPCV) at 2, 4, and 6 months of age and the 23-valent pneumococcal polysaccharide vaccine (23vPPV) at 18 months of age. We evaluated this program's effectiveness in reducing the risk of hospitalization for acute lower respiratory tract infection (ALRI) in Northern Territory (NT) Indigenous children aged 5-23 months. Methods We conducted a retrospective cohort study involving all NT Indigenous children born from 1 April 2000 through 31 October 2004. Person-time at-risk after 0, 1, 2, and 3 doses of 7vPCV and after 0 and 1 dose of 23vPPV and the number of ALRI following each dose were used to calculate dose-specific rates of ALRI for children 5-23 months of age. Rates were compared using Cox proportional hazards models, with the number of doses of each vaccine serving as time-dependent covariates. Results There were 5482 children and 8315 child-years at risk, with 2174 episodes of ALRI requiring hospitalization (overall incidence, 261 episodes per 1000 child-years at risk). Elevated risk of ALRI requiring hospitalization was observed after each dose of the 7vPCV vaccine, compared with that for children who received no doses, and an even greater elevation in risk was observed after each dose of the 23vPPV ( adjusted hazard ratio [HR] vs no dose, 1.39; 95% confidence interval [CI], 1.12-1.71;). Risk was highest among children Pp. 002 vaccinated with the 23vPPV who had received < 3 doses of the 7vPCV (adjusted HR, 1.81; 95% CI, 1.32-2.48). Conclusions Our results suggest an increased risk of ALRI requiring hospitalization after pneumococcal vaccination, particularly after receipt of the 23vPPV booster. The use of the 23vPPV booster should be reevaluated.
Resumo:
Objective To describe the epidemiology of acute lower respiratory infection (ALRI) and bronchiectasis in Northern Territory Indigenous infants hospitalised in the first year of life. Design A historical cohort study constructed from the NT Hospital Discharge Dataset and the NT Imm(u)nisation Register. Participants and setting All NT resident Indigenous infants, born 1 January 1999 to 31 December 2004, admitted to NT public hospitals and followed up to 12 months of age. Main outcome measures Incidence of ALRI and bronchiectasis (ICD-10-AM codes) and radiologically confirmed pneumonia (World Health Organization protocol). Results Data on 9295 infants, 8498 child-years of observation and 15 948 hospitalised episodes of care were analysed. ALRI incidence was 426.7 episodes per 1000 child-years (95% Cl, 416.2-437.2). Incidence rates were two times higher (relative risk, 2.12; 95% Cl, 1.98-2.27) for infants in Central Australia compared with those in the Top End. The median age at first admission for an ALRI was 4.6 months (interquartile range, 2.6-7.3). Bronchiolitis accounted for most of the disease burden, with a rate of 227 per 1000 child-years. The incidence of first diagnosis of bronchiectasis was 1.18 per 1000 child-years (95% Cl, 0.60-2.16). One or more key comorbidities were present in 1445 of the 3227 (44.8%) episodes of care for ALRI. Conclusions Rates of ALRI and bronchiectasis in NT Indigenous infants are excessive, with early onset, frequent repeat episodes, and a high prevalence of comorbidities. These high rates of disease demand urgent attention.
Resumo:
Objective To evaluate the effectiveness of the 7-valent pneumococcal conjugate vaccine (PCV7) in preventing pneumonia, diagnosed radiologically according to World Health Organization (WHO) criteria, among indigenous infants in the Northern Territory of Australia. Methods We conducted a historical cohort study of consecutive indigenous birth cohorts between 1 April 1998 and 28 February 2005. Children were followed up to 18 months of age. The PCV7 programme commenced on 1 June 2001. All chest X-rays taken within 3 days of any hospitalization were assessed. The primary endpoint was a first episode of WHO-defined pneumonia requiring hospitalization. Cox proportional hazards models were used to compare disease incidence. Findings There were 526 pneumonia events among 10 600 children - an incidence of 3.3 per 1000 child-months; 183 episodes (34.8%) occurred before 5 months of age and 247 (47.0%) by 7 months. Of the children studied, 27% had received 3 doses of vaccine by 7 months of age. Hazard ratios for endpoint pneumonia were 1.01 for 1 versus 0 doses; 1.03 for 2 versus 0 doses; and 0.84 for 3 versus 0 doses. Conclusion There was limited evidence that PCV7 reduced the incidence of radiologically confirmed pneumonia among Northern Territory indigenous infants, although there was a non-significant trend towards an effect after receipt of the third dose. These findings might be explained by lack of timely vaccination and/or occurrence of disease at an early age. Additionally, the relative contribution of vaccine-type pneumococcus to severe pneumonia in a setting where multiple other pathogens are prevalent may differ with respect to other settings where vaccine efficacy has been clearly established.
Resumo:
Objective There are no objective ambulatory studies on the temporal relationship between reflux and cough in children. Commercial pHmetry loggers have slow capture rates (0.25 Hz) that limit objective quantification of reflux and cough. The authors aimed to evaluate if there is a temporal association between cough and acid pH in ambulatory children with chronic cough. setting and patients The authors studied children (aged <14 years) with chronic cough, suspected of acid reflux and considered for pHmetry using a specifically built ambulatory pHmetry–cough logger that enabled the simultaneous ambulatory recording of cough and pH with a fast (10 Hz) capture rate. Main outcome measures Coughs within (before and after) 10, 30, 60 and 120 s of a reflux episode (pH<4 for >0.5 s). Results Analysis of 5628 coughs in 20 children. Most coughs (83.9%) were independent of a reflux event. Cough–reflux (median 19, IQR 3–45) and reflux–cough (24.5, 13–51) sequences were equally likely to occur within 120 s. Within the 10 and 30 s time frame, reflux–cough (10 s=median 2.5, IQR 0–7.25; 30 s=6.5, 1.25–22.25) sequences were significantly less frequent than reflux–no cough (10 s=27, IQR 15–65; 30 s=24.5, 14.5–55.5) sequences, (p=0.0001 and p=0.001, respectively). No differences were found for 60 and 120 s time frame. Cough–reflux sequence (median 1.0, IQR 0–8) within 10 s was significantly less (p=0.0001) than no cough–reflux sequences (median 29.5, 15–67), within 30 s (p=0.006) and 60 s (p=0.048) but not within 120 s (p=0.47). Conclusions In children with chronic cough and suspected of having gastro-oesophageal reflux disease, the temporal relationship between acid reflux and cough is unlikely causal.
Resumo:
Background Few data on the relationship between temperature variability and childhood pneumonia are available. This study attempted to fill this knowledge gap. Methods A quasi-Poisson generalized linear regression model combined with a distributed lag nonlinear model was used to quantify the impacts of diurnal temperature range (DTR) and temperature change between two neighbouring days (TCN) on emergency department visits (EDVs) for childhood pneumonia in Brisbane, from 2001 to 2010, after controlling for possible confounders. Results An adverse impact of TCN on EDVs for childhood pneumonia was observed, and the magnitude of this impact increased from the first five years (2001–2005) to the second five years (2006–2010). Children aged 5–14 years, female children and Indigenous children were particularly vulnerable to TCN impact. However, there was no significant association between DTR and EDVs for childhood pneumonia. Conclusions As climate change progresses, the days with unstable weather pattern are likely to increase. Parents and caregivers of children should be aware of the high risk of pneumonia posed by big TCN and take precautionary measures to protect children, especially those with a history of respiratory diseases, from climate impacts.