291 resultados para Convex piecewise-linear costs
em Queensland University of Technology - ePrints Archive
Resumo:
Fixed-wing aircraft equipped with downward pointing cameras and/or LiDAR can be used for inspecting approximately piecewise linear assets such as oil-gas pipelines, roads and power-lines. Automatic control of such aircraft is important from a productivity and safety point of view (long periods of precision manual flight at low-altitude is not considered reasonable from a safety perspective). This paper investigates the effect of any unwanted coupling between guidance and autopilot loops (typically caused by unmodeled delays in the aircraft’s response), and the specific impact of any unwanted dynamics on the performance of aircraft undertaking inspection of piecewise linear corridor assets (such as powerlines). Simulation studies and experimental flight tests are used to demonstrate the benefits of a simple compensator in mitigating the unwanted lateral oscillatory behaviour (or coupling) that is caused by unmodeled time constants in the aircraft dynamics.
Resumo:
In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.
Resumo:
Longitudinal data, where data are repeatedly observed or measured on a temporal basis of time or age provides the foundation of the analysis of processes which evolve over time, and these can be referred to as growth or trajectory models. One of the traditional ways of looking at growth models is to employ either linear or polynomial functional forms to model trajectory shape, and account for variation around an overall mean trend with the inclusion of random eects or individual variation on the functional shape parameters. The identification of distinct subgroups or sub-classes (latent classes) within these trajectory models which are not based on some pre-existing individual classification provides an important methodology with substantive implications. The identification of subgroups or classes has a wide application in the medical arena where responder/non-responder identification based on distinctly diering trajectories delivers further information for clinical processes. This thesis develops Bayesian statistical models and techniques for the identification of subgroups in the analysis of longitudinal data where the number of time intervals is limited. These models are then applied to a single case study which investigates the neuropsychological cognition for early stage breast cancer patients undergoing adjuvant chemotherapy treatment from the Cognition in Breast Cancer Study undertaken by the Wesley Research Institute of Brisbane, Queensland. Alternative formulations to the linear or polynomial approach are taken which use piecewise linear models with a single turning point, change-point or knot at a known time point and latent basis models for the non-linear trajectories found for the verbal memory domain of cognitive function before and after chemotherapy treatment. Hierarchical Bayesian random eects models are used as a starting point for the latent class modelling process and are extended with the incorporation of covariates in the trajectory profiles and as predictors of class membership. The Bayesian latent basis models enable the degree of recovery post-chemotherapy to be estimated for short and long-term followup occasions, and the distinct class trajectories assist in the identification of breast cancer patients who maybe at risk of long-term verbal memory impairment.
Resumo:
The potential of distributed reactive power control to improve the voltage profile of radial distribution feeders has been reported in literature by few authors. However, the multiple inverters injecting or absorbing reactive power across a distribution feeder may introduce control interactions and/or voltage instability. Such controller interactions can be alleviated if the inverters are allowed to operate on voltage droop. First, the paper demonstrates that a linear shallow droop line can maintain the steady state voltage profile close to reference, up to a certain level of loading. Then, impacts of the shallow droop line control on line losses and line power factors are examined. Finally, a piecewise linear droop line which can achieve reduced line losses and close to unity power factor at the feeder source is proposed.
Resumo:
Protein adsorption at solid-liquid interfaces is critical to many applications, including biomaterials, protein microarrays and lab-on-a-chip devices. Despite this general interest, and a large amount of research in the last half a century, protein adsorption cannot be predicted with an engineering level, design-orientated accuracy. Here we describe a Biomolecular Adsorption Database (BAD), freely available online, which archives the published protein adsorption data. Piecewise linear regression with breakpoint applied to the data in the BAD suggests that the input variables to protein adsorption, i.e., protein concentration in solution; protein descriptors derived from primary structure (number of residues, global protein hydrophobicity and range of amino acid hydrophobicity, isoelectric point); surface descriptors (contact angle); and fluid environment descriptors (pH, ionic strength), correlate well with the output variable-the protein concentration on the surface. Furthermore, neural network analysis revealed that the size of the BAD makes it sufficiently representative, with a neural network-based predictive error of 5% or less. Interestingly, a consistently better fit is obtained if the BAD is divided in two separate sub-sets representing protein adsorption on hydrophilic and hydrophobic surfaces, respectively. Based on these findings, selected entries from the BAD have been used to construct neural network-based estimation routines, which predict the amount of adsorbed protein, the thickness of the adsorbed layer and the surface tension of the protein-covered surface. While the BAD is of general interest, the prediction of the thickness and the surface tension of the protein-covered layers are of particular relevance to the design of microfluidics devices.
Resumo:
Two oxazolidine-2-thiones, thio-analogs of linezolid, were synthesized and their antibacterial properties evaluated. Unlike oxazolidinones, the thio-analogs did not inhibit the growth of Gram positive bacteria. A molecular modeling study has been carried out to aid understanding of this unexpected finding.
Resumo:
This paper presents a case study for the application of a Linear Engineering Asset Renewal decision support software tool (LinEAR) at a water distribution network in Australia. This case study examines how the LinEAR can assist water utilities to minimise their total pipeline management cost, to make a long-term budget based on mathematically predicted expenditure, and to present calculated evidence for supporting their expenditure requirements. The outcomes from the study on pipeline renewal decision support demonstrate that LinEAR can help water utilities to improve the decision process and save renewal costs over a long-term by providing an optimum renewal schedules. This software can help organisation to accumulate technical knowledge and prediction future impact of the decision using what-if analysis.
Resumo:
Objective: To estimate the relative inpatient costs of hospital-acquired conditions. Methods: Patient level costs were estimated using computerized costing systems that log individual utilization of inpatient services and apply sophisticated cost estimates from the hospital's general ledger. Occurrence of hospital-acquired conditions was identified using an Australian ‘condition-onset' flag for diagnoses not present on admission. These were grouped to yield a comprehensive set of 144 categories of hospital-acquired conditions to summarize data coded with ICD-10. Standard linear regression techniques were used to identify the independent contribution of hospital-acquired conditions to costs, taking into account the case-mix of a sample of acute inpatients (n = 1,699,997) treated in Australian public hospitals in Victoria (2005/06) and Queensland (2006/07). Results: The most costly types of complications were post-procedure endocrine/metabolic disorders, adding AU$21,827 to the cost of an episode, followed by MRSA (AU$19,881) and enterocolitis due to Clostridium difficile (AU$19,743). Aggregate costs to the system, however, were highest for septicaemia (AU$41.4 million), complications of cardiac and vascular implants other than septicaemia (AU$28.7 million), acute lower respiratory infections, including influenza and pneumonia (AU$27.8 million) and UTI (AU$24.7 million). Hospital-acquired complications are estimated to add 17.3% to treatment costs in this sample. Conclusions: Patient safety efforts frequently focus on dramatic but rare complications with very serious patient harm. Previous studies of the costs of adverse events have provided information on ‘indicators’ of safety problems rather than the full range of hospital-acquired conditions. Adding a cost dimension to priority-setting could result in changes to the focus of patient safety programmes and research. Financial information should be combined with information on patient outcomes to allow for cost-utility evaluation of future interventions.
Resumo:
Linear assets are engineering infrastructure, such as pipelines, railway lines, and electricity cables, which span long distances and can be divided into different segments. Optimal management of such assets is critical for asset owners as they normally involve significant capital investment. Currently, Time Based Preventive Maintenance (TBPM) strategies are commonly used in industry to improve the reliability of such assets, as they are easy to implement compared with reliability or risk-based preventive maintenance strategies. Linear assets are normally of large scale and thus their preventive maintenance is costly. Their owners and maintainers are always seeking to optimize their TBPM outcomes in terms of minimizing total expected costs over a long term involving multiple maintenance cycles. These costs include repair costs, preventive maintenance costs, and production losses. A TBPM strategy defines when Preventive Maintenance (PM) starts, how frequently the PM is conducted and which segments of a linear asset are operated on in each PM action. A number of factors such as required minimal mission time, customer satisfaction, human resources, and acceptable risk levels need to be considered when planning such a strategy. However, in current practice, TBPM decisions are often made based on decision makers’ expertise or industrial historical practice, and lack a systematic analysis of the effects of these factors. To address this issue, here we investigate the characteristics of TBPM of linear assets, and develop an effective multiple criteria decision making approach for determining an optimal TBPM strategy. We develop a recursive optimization equation which makes it possible to evaluate the effect of different maintenance options for linear assets, such as the best partitioning of the asset into segments and the maintenance cost per segment.
Resumo:
We consider the problem of controlling a Markov decision process (MDP) with a large state space, so as to minimize average cost. Since it is intractable to compete with the optimal policy for large scale problems, we pursue the more modest goal of competing with a low-dimensional family of policies. We use the dual linear programming formulation of the MDP average cost problem, in which the variable is a stationary distribution over state-action pairs, and we consider a neighborhood of a low-dimensional subset of the set of stationary distributions (defined in terms of state-action features) as the comparison class. We propose a technique based on stochastic convex optimization and give bounds that show that the performance of our algorithm approaches the best achievable by any policy in the comparison class. Most importantly, this result depends on the size of the comparison class, but not on the size of the state space. Preliminary experiments show the effectiveness of the proposed algorithm in a queuing application.
Resumo:
Farmers' exposure to pesticides is high in developing countries. As a result many farmers suffer from ill-health, both short and long term. Deaths are not uncommon. This paper addresses this issue. Field survey data from Sri Lanka are used to estimate farmers' expenditure on defensive behavior (DE) and to determine factors that influence DE. The avertive behavior approach is used to estimate costs. Tobit regression analysis is used to determine factors that influence DE. Field survey data show that farmers' expenditures on DE are low. This is inversely related to high incidence of ill health among farmers using pesticides.