103 resultados para Constrained ridge regression

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There have been notable advances in learning to control complex robotic systems using methods such as Locally Weighted Regression (LWR). In this paper we explore some potential limits of LWR for robotic applications, particularly investigating its application to systems with a long horizon of temporal dependence. We define the horizon of temporal dependence as the delay from a control input to a desired change in output. LWR alone cannot be used in a temporally dependent system to find meaningful control values from only the current state variables and output, as the relationship between the input and the current state is under-constrained. By introducing a receding horizon of the future output states of the system, we show that sufficient constraint is applied to learn good solutions through LWR. The new method, Receding Horizon Locally Weighted Regression (RH-LWR), is demonstrated through one-shot learning on a real Series Elastic Actuator controlling a pendulum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The provision of autonomy supportive environments that promote physical activity engagement have become popular in contemporary youth settings. However, questions remain about whether adolescent perceptions of their autonomy have implications for physical activity. The purpose of this investigation was to examine the association between adolescents’ self-reported physical activity and their perceived autonomy. Participants (n = 384 adolescents) aged between 12 and 15 years were recruited from six secondary schools in metropolitan Brisbane, Australia. Self-reported measures of physical activity and autonomy were obtained. Logistic regression with inverse probability weights were used to examine the association between autonomy and the odds of meeting youth physical activity guidelines. Autonomy (OR 0.61, 95% CI 0.49-0.76) and gender (OR 0.62, 95% CI 0.46-0.83) were negatively associated with meeting physical activity guidelines. However, the model explained only a small amount of the variation in whether youth in this sample met physical activity guidelines (R2 = 0.023). For every 1 unit decrease in autonomy (on an index from 1 to 5), participants were 1.64 times more likely to meet physical activity guidelines. The findings, which are at odds with several previous studies, suggest that interventions designed to facilitate youth physical activity should limit opportunities for youth to make independent decisions about their engagement. However, the small amount of variation explained by the predictors in the model is a caveat, and should be considered prior to applying such suggestions in practical settings. Future research should continue to examine a larger age range, longitudinal observational or intervention studies to examine assertions of causality, as well as objective measurement of physical activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expert elicitation is the process of retrieving and quantifying expert knowledge in a particular domain. Such information is of particular value when the empirical data is expensive, limited, or unreliable. This paper describes a new software tool, called Elicitator, which assists in quantifying expert knowledge in a form suitable for use as a prior model in Bayesian regression. Potential environmental domains for applying this elicitation tool include habitat modeling, assessing detectability or eradication, ecological condition assessments, risk analysis, and quantifying inputs to complex models of ecological processes. The tool has been developed to be user-friendly, extensible, and facilitate consistent and repeatable elicitation of expert knowledge across these various domains. We demonstrate its application to elicitation for logistic regression in a geographically based ecological context. The underlying statistical methodology is also novel, utilizing an indirect elicitation approach to target expert knowledge on a case-by-case basis. For several elicitation sites (or cases), experts are asked simply to quantify their estimated ecological response (e.g. probability of presence), and its range of plausible values, after inspecting (habitat) covariates via GIS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous expert elicitation methods have been suggested for generalised linear models (GLMs). This paper compares three relatively new approaches to eliciting expert knowledge in a form suitable for Bayesian logistic regression. These methods were trialled on two experts in order to model the habitat suitability of the threatened Australian brush-tailed rock-wallaby (Petrogale penicillata). The first elicitation approach is a geographically assisted indirect predictive method with a geographic information system (GIS) interface. The second approach is a predictive indirect method which uses an interactive graphical tool. The third method uses a questionnaire to elicit expert knowledge directly about the impact of a habitat variable on the response. Two variables (slope and aspect) are used to examine prior and posterior distributions of the three methods. The results indicate that there are some similarities and dissimilarities between the expert informed priors of the two experts formulated from the different approaches. The choice of elicitation method depends on the statistical knowledge of the expert, their mapping skills, time constraints, accessibility to experts and funding available. This trial reveals that expert knowledge can be important when modelling rare event data, such as threatened species, because experts can provide additional information that may not be represented in the dataset. However care must be taken with the way in which this information is elicited and formulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Web service composition is an important problem in web service based systems. It is about how to build a new value-added web service using existing web services. A web service may have many implementations, all of which have the same functionality, but may have different QoS values. Thus, a significant research problem in web service composition is how to select a web service implementation for each of the web services such that the composite web service gives the best overall performance. This is so-called optimal web service selection problem. There may be mutual constraints between some web service implementations. Sometimes when an implementation is selected for one web service, a particular implementation for another web service must be selected. This is so called dependency constraint. Sometimes when an implementation for one web service is selected, a set of implementations for another web service must be excluded in the web service composition. This is so called conflict constraint. Thus, the optimal web service selection is a typical constrained ombinatorial optimization problem from the computational point of view. This paper proposes a new hybrid genetic algorithm for the optimal web service selection problem. The hybrid genetic algorithm has been implemented and evaluated. The evaluation results have shown that the hybrid genetic algorithm outperforms other two existing genetic algorithms when the number of web services and the number of constraints are large.