164 resultados para Concept drift
em Queensland University of Technology - ePrints Archive
Resumo:
Business processes are prone to continuous and unexpected changes. Process workers may start executing a process differently in order to adjust to changes in workload, season, guidelines or regulations for example. Early detection of business process changes based on their event logs – also known as business process drift detection – enables analysts to identify and act upon changes that may otherwise affect process performance. Previous methods for business process drift detection are based on an exploration of a potentially large feature space and in some cases they require users to manually identify the specific features that characterize the drift. Depending on the explored feature set, these methods may miss certain types of changes. This paper proposes a fully automated and statistically grounded method for detecting process drift. The core idea is to perform statistical tests over the distributions of runs observed in two consecutive time windows. By adaptively sizing the window, the method strikes a trade-off between classification accuracy and drift detection delay. A validation on synthetic and real-life logs shows that the method accurately detects typical change patterns and scales up to the extent it is applicable for online drift detection.
Resumo:
Existing business process drift detection methods do not work with event streams. As such, they are designed to detect inter-trace drifts only, i.e. drifts that occur between complete process executions (traces), as recorded in event logs. However, process drift may also occur during the execution of a process, and may impact ongoing executions. Existing methods either do not detect such intra-trace drifts, or detect them with a long delay. Moreover, they do not perform well with unpredictable processes, i.e. processes whose logs exhibit a high number of distinct executions to the total number of executions. We address these two issues by proposing a fully automated and scalable method for online detection of process drift from event streams. We perform statistical tests over distributions of behavioral relations between events, as observed in two adjacent windows of adaptive size, sliding along with the stream. An extensive evaluation on synthetic and real-life logs shows that our method is fast and accurate in the detection of typical change patterns, and performs significantly better than the state of the art.
Resumo:
Many organizations realize that increasing amounts of data (“Big Data”) need to be dealt with intelligently in order to compete with other organizations in terms of efficiency, speed and services. The goal is not to collect as much data as possible, but to turn event data into valuable insights that can be used to improve business processes. However, data-oriented analysis approaches fail to relate event data to process models. At the same time, large organizations are generating piles of process models that are disconnected from the real processes and information systems. In this chapter we propose to manage large collections of process models and event data in an integrated manner. Observed and modeled behavior need to be continuously compared and aligned. This results in a “liquid” business process model collection, i.e. a collection of process models that is in sync with the actual organizational behavior. The collection should self-adapt to evolving organizational behavior and incorporate relevant execution data (e.g. process performance and resource utilization) extracted from the logs, thereby allowing insightful reports to be produced from factual organizational data.