188 resultados para Computer Algebra

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes an automated procedure for analysing the significance of each of the many terms in the equations of motion for a serial-link robot manipulator. Significance analysis provides insight into the rigid-body dynamic effects that are significant locally or globally in the manipulator's state space. Deleting those terms that do not contribute significantly to the total joint torque can greatly reduce the computational burden for online control, and a Monte-Carlo style simulation is used to investigate the errors thus introduced. The procedures described are a hybrid of symbolic and numeric techniques, and can be readily implemented using standard computer algebra packages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis is about the derivation of the addition law on an arbitrary elliptic curve and efficiently adding points on this elliptic curve using the derived addition law. The outcomes of this research guarantee practical speedups in higher level operations which depend on point additions. In particular, the contributions immediately find applications in cryptology. Mastered by the 19th century mathematicians, the study of the theory of elliptic curves has been active for decades. Elliptic curves over finite fields made their way into public key cryptography in late 1980’s with independent proposals by Miller [Mil86] and Koblitz [Kob87]. Elliptic Curve Cryptography (ECC), following Miller’s and Koblitz’s proposals, employs the group of rational points on an elliptic curve in building discrete logarithm based public key cryptosystems. Starting from late 1990’s, the emergence of the ECC market has boosted the research in computational aspects of elliptic curves. This thesis falls into this same area of research where the main aim is to speed up the additions of rational points on an arbitrary elliptic curve (over a field of large characteristic). The outcomes of this work can be used to speed up applications which are based on elliptic curves, including cryptographic applications in ECC. The aforementioned goals of this thesis are achieved in five main steps. As the first step, this thesis brings together several algebraic tools in order to derive the unique group law of an elliptic curve. This step also includes an investigation of recent computer algebra packages relating to their capabilities. Although the group law is unique, its evaluation can be performed using abundant (in fact infinitely many) formulae. As the second step, this thesis progresses the finding of the best formulae for efficient addition of points. In the third step, the group law is stated explicitly by handling all possible summands. The fourth step presents the algorithms to be used for efficient point additions. In the fifth and final step, optimized software implementations of the proposed algorithms are presented in order to show that theoretical speedups of step four can be practically obtained. In each of the five steps, this thesis focuses on five forms of elliptic curves over finite fields of large characteristic. A list of these forms and their defining equations are given as follows: (a) Short Weierstrass form, y2 = x3 + ax + b, (b) Extended Jacobi quartic form, y2 = dx4 + 2ax2 + 1, (c) Twisted Hessian form, ax3 + y3 + 1 = dxy, (d) Twisted Edwards form, ax2 + y2 = 1 + dx2y2, (e) Twisted Jacobi intersection form, bs2 + c2 = 1, as2 + d2 = 1, These forms are the most promising candidates for efficient computations and thus considered in this work. Nevertheless, the methods employed in this thesis are capable of handling arbitrary elliptic curves. From a high level point of view, the following outcomes are achieved in this thesis. - Related literature results are brought together and further revisited. For most of the cases several missed formulae, algorithms, and efficient point representations are discovered. - Analogies are made among all studied forms. For instance, it is shown that two sets of affine addition formulae are sufficient to cover all possible affine inputs as long as the output is also an affine point in any of these forms. In the literature, many special cases, especially interactions with points at infinity were omitted from discussion. This thesis handles all of the possibilities. - Several new point doubling/addition formulae and algorithms are introduced, which are more efficient than the existing alternatives in the literature. Most notably, the speed of extended Jacobi quartic, twisted Edwards, and Jacobi intersection forms are improved. New unified addition formulae are proposed for short Weierstrass form. New coordinate systems are studied for the first time. - An optimized implementation is developed using a combination of generic x86-64 assembly instructions and the plain C language. The practical advantages of the proposed algorithms are supported by computer experiments. - All formulae, presented in the body of this thesis, are checked for correctness using computer algebra scripts together with details on register allocations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a simple and intuitive approach to determining the kinematic parameters of a serial-link robot in Denavit– Hartenberg (DH) notation. Once a manipulator’s kinematics is parameterized in this form, a large body of standard algorithms and code implementations for kinematics, dynamics, motion planning, and simulation are available. The proposed method has two parts. The first is the “walk through,” a simple procedure that creates a string of elementary translations and rotations, from the user-defined base coordinate to the end-effector. The second step is an algebraic procedure to manipulate this string into a form that can be factorized as link transforms, which can be represented in standard or modified DH notation. The method allows for an arbitrary base and end-effector coordinate system as well as an arbitrary zero joint angle pose. The algebraic procedure is amenable to computer algebra manipulation and a Java program is available as supplementary downloadable material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linear algebra provides theory and technology that are the cornerstones of a range of cutting edge mathematical applications, from designing computer games to complex industrial problems, as well as more traditional applications in statistics and mathematical modelling. Once past introductions to matrices and vectors, the challenges of balancing theory, applications and computational work across mathematical and statistical topics and problems are considerable, particularly given the diversity of abilities and interests in typical cohorts. This paper considers two such cohorts in a second level linear algebra course in different years. The course objectives and materials were almost the same, but some changes were made in the assessment package. In addition to considering effects of these changes, the links with achievement in first year courses are analysed, together with achievement in a following computational mathematics course. Some results that may initially appear surprising provide insight into the components of student learning in linear algebra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we introduce a path algebra well suited for navigation in environments that can be abstracted as topological graphs. From this path algebra, we derive algorithms to reduce routes in such environments. The routes are reduced in the sense that they are shorter (contain fewer edges), but still connect the endpoints of the initial routes. Contrary to planning methods descended from Disjktra’s Shortest Path Algorithm like D , the navigation methods derived from our path algebra do not require any graph representation. We prove that the reduced routes are optimal when the graphs are without cycles. In the case of graphs with cycles, we prove that whatever the length of the initial route, the length of the reduced route is bounded by a constant that only depends on the structure of the environment.