117 resultados para Classifier decisions
em Queensland University of Technology - ePrints Archive
Resumo:
Fusion techniques have received considerable attention for achieving lower error rates with biometrics. A fused classifier architecture based on sequential integration of multi-instance and multi-sample fusion schemes allows controlled trade-off between false alarms and false rejects. Expressions for each type of error for the fused system have previously been derived for the case of statistically independent classifier decisions. It is shown in this paper that the performance of this architecture can be improved by modelling the correlation between classifier decisions. Correlation modelling also enables better tuning of fusion model parameters, ‘N’, the number of classifiers and ‘M’, the number of attempts/samples, and facilitates the determination of error bounds for false rejects and false accepts for each specific user. Error trade-off performance of the architecture is evaluated using HMM based speaker verification on utterances of individual digits. Results show that performance is improved for the case of favourable correlated decisions. The architecture investigated here is directly applicable to speaker verification from spoken digit strings such as credit card numbers in telephone or voice over internet protocol based applications. It is also applicable to other biometric modalities such as finger prints and handwriting samples.
Resumo:
Statistical dependence between classifier decisions is often shown to improve performance over statistically independent decisions. Though the solution for favourable dependence between two classifier decisions has been derived, the theoretical analysis for the general case of 'n' client and impostor decision fusion has not been presented before. This paper presents the expressions developed for favourable dependence of multi-instance and multi-sample fusion schemes that employ 'AND' and 'OR' rules. The expressions are experimentally evaluated by considering the proposed architecture for text-dependent speaker verification using HMM based digit dependent speaker models. The improvement in fusion performance is found to be higher when digit combinations with favourable client and impostor decisions are used for speaker verification. The total error rate of 20% for fusion of independent decisions is reduced to 2.1% for fusion of decisions that are favourable for both client and impostors. The expressions developed here are also applicable to other biometric modalities, such as finger prints and handwriting samples, for reliable identity verification.
Resumo:
Information fusion in biometrics has received considerable attention. The architecture proposed here is based on the sequential integration of multi-instance and multi-sample fusion schemes. This method is analytically shown to improve the performance and allow a controlled trade-off between false alarms and false rejects when the classifier decisions are statistically independent. Equations developed for detection error rates are experimentally evaluated by considering the proposed architecture for text dependent speaker verification using HMM based digit dependent speaker models. The tuning of parameters, n classifiers and m attempts/samples, is investigated and the resultant detection error trade-off performance is evaluated on individual digits. Results show that performance improvement can be achieved even for weaker classifiers (FRR-19.6%, FAR-16.7%). The architectures investigated apply to speaker verification from spoken digit strings such as credit card numbers in telephone or VOIP or internet based applications.
Resumo:
Reliability of the performance of biometric identity verification systems remains a significant challenge. Individual biometric samples of the same person (identity class) are not identical at each presentation and performance degradation arises from intra-class variability and inter-class similarity. These limitations lead to false accepts and false rejects that are dependent. It is therefore difficult to reduce the rate of one type of error without increasing the other. The focus of this dissertation is to investigate a method based on classifier fusion techniques to better control the trade-off between the verification errors using text-dependent speaker verification as the test platform. A sequential classifier fusion architecture that integrates multi-instance and multisample fusion schemes is proposed. This fusion method enables a controlled trade-off between false alarms and false rejects. For statistically independent classifier decisions, analytical expressions for each type of verification error are derived using base classifier performances. As this assumption may not be always valid, these expressions are modified to incorporate the correlation between statistically dependent decisions from clients and impostors. The architecture is empirically evaluated by applying the proposed architecture for text dependent speaker verification using the Hidden Markov Model based digit dependent speaker models in each stage with multiple attempts for each digit utterance. The trade-off between the verification errors is controlled using the parameters, number of decision stages (instances) and the number of attempts at each decision stage (samples), fine-tuned on evaluation/tune set. The statistical validation of the derived expressions for error estimates is evaluated on test data. The performance of the sequential method is further demonstrated to depend on the order of the combination of digits (instances) and the nature of repetitive attempts (samples). The false rejection and false acceptance rates for proposed fusion are estimated using the base classifier performances, the variance in correlation between classifier decisions and the sequence of classifiers with favourable dependence selected using the 'Sequential Error Ratio' criteria. The error rates are better estimated by incorporating user-dependent (such as speaker-dependent thresholds and speaker-specific digit combinations) and class-dependent (such as clientimpostor dependent favourable combinations and class-error based threshold estimation) information. The proposed architecture is desirable in most of the speaker verification applications such as remote authentication, telephone and internet shopping applications. The tuning of parameters - the number of instances and samples - serve both the security and user convenience requirements of speaker-specific verification. The architecture investigated here is applicable to verification using other biometric modalities such as handwriting, fingerprints and key strokes.
Resumo:
Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual information is not taken into account. We propose a block-based method capable of dealing with noise, illumination variations, and dynamic backgrounds, while still obtaining smooth contours of foreground objects. Specifically, image sequences are analyzed on an overlapping block-by-block basis. A low-dimensional texture descriptor obtained from each block is passed through an adaptive classifier cascade, where each stage handles a distinct problem. A probabilistic foreground mask generation approach then exploits block overlaps to integrate interim block-level decisions into final pixel-level foreground segmentation. Unlike many pixel-based methods, ad-hoc postprocessing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed approach obtains on average better results (both qualitatively and quantitatively) than several prominent methods. We furthermore propose the use of tracking performance as an unbiased approach for assessing the practical usefulness of foreground segmentation methods, and show that the proposed approach leads to considerable improvements in tracking accuracy on the CAVIAR dataset.
Resumo:
Classifier selection is a problem encountered by multi-biometric systems that aim to improve performance through fusion of decisions. A particular decision fusion architecture that combines multiple instances (n classifiers) and multiple samples (m attempts at each classifier) has been proposed in previous work to achieve controlled trade-off between false alarms and false rejects. Although analysis on text-dependent speaker verification has demonstrated better performance for fusion of decisions with favourable dependence compared to statistically independent decisions, the performance is not always optimal. Given a pool of instances, best performance with this architecture is obtained for certain combination of instances. Heuristic rules and diversity measures have been commonly used for classifier selection but it is shown that optimal performance is achieved for the `best combination performance' rule. As the search complexity for this rule increases exponentially with the addition of classifiers, a measure - the sequential error ratio (SER) - is proposed in this work that is specifically adapted to the characteristics of sequential fusion architecture. The proposed measure can be used to select a classifier that is most likely to produce a correct decision at each stage. Error rates for fusion of text-dependent HMM based speaker models using SER are compared with other classifier selection methodologies. SER is shown to achieve near optimal performance for sequential fusion of multiple instances with or without the use of multiple samples. The methodology applies to multiple speech utterances for telephone or internet based access control and to other systems such as multiple finger print and multiple handwriting sample based identity verification systems.