102 resultados para Chloride Removal
em Queensland University of Technology - ePrints Archive
Resumo:
Some minerals are colloidal and are poorly diffracting . Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of minerals. Among this group of minerals is zykaite with formula Fe4(AsO4)(SO4)(OH)•15H2O. The objective of this research is to determine the molecular structure of the mineral zykaite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO43-, SO42- and water stretching vibrations. The sharp band at 3515 cm-1 is assigned to the stretching vibration of the OH units. This mineral offers a mechanism for the formation of more crystalline minerals such as scorodite and bukovskyite. Arsenate ions can be removed from aqueous systems through the addition of ferric compounds such as ferric chloride. This results in the formation of minerals such as zykaite and pitticite (Fe3+,AsO4,SO4,H2O).
Resumo:
The application of layered double hydroxides (LDHs) and thermally activated LDHs for the removal of various fluorine (F-, BF-4), chlorine (Cl-,ClO-4), bromine (Br-, BrO-3) and iodine (I-, IO-3) species from aqueous solutions has been reviewed in this article. LDHs and thermally activated LDHs were able to significantly reduce the concentration of selected anions in laboratory scale experiments. The M2+:M3+ cation ratio of the LDH adsorbent was an important factor which influenced anion uptake. Though LDHs were able to remove some target anion species through anion exchange and surface adsorption thermal activation and reformation generally produced better results. The presence of competing anions including carbonate, phosphate and sulphate had a significant impact on uptake of the target anion as LDHs typically exhibit lower affinity towards monovalent anions compared to anions with multiple charges. The removal of fluoride and perchlorate from aqueous solution by a continuous flow system utilising fixed bed columns packed with LDH adsorbents has also been investigated. The adsorption capacity of the columns at breakpoint was heavily dependent on the flow rate and lower than result reported for the corresponding batch methods. There is still considerable scope for future research on numerous topics summarised in this article.
Resumo:
Background Guidelines and clinical practice for the prevention of complications associated with central venous catheters (CVC) around the world vary greatly. Most institutions recommend the use of heparin to prevent occlusion, however there is debate regarding the need for heparin and evidence to suggest 0.9% sodium chloride (normal saline) may be as effective. The use of heparin is not without risk, may be unnecessary and is also associated with increased cost. Objectives To assess the clinical effects (benefits and harms) of intermittent flushing of heparin versus normal saline to prevent occlusion in long term central venous catheters in infants and children. Search Methods The Cochrane Vascular Trials Search Co-ordinator searched the Specialised Register (last searched April 2015) and the Cochrane Register of Studies (Issue 3, 2015). We also searched the reference lists of retrieved trials. Selection criteria Randomised controlled trials that compared the efficacy of normal saline with heparin to prevent occlusion of long term CVCs in infants and children aged up to 18 years of age were included. We excluded temporary CVCs and peripherally inserted central catheters (PICC). Data Collection and Analysis Two review authors independently assessed trial inclusion criteria, trial quality and extracted data. Rate ratios were calculated for two outcome measures - occlusion of the CVC and central line-associated blood stream infection. Other outcome measures included duration of catheter placement, inability to withdraw blood from the catheter, use of urokinase or recombinant tissue plasminogen, incidence of removal or re-insertion of the catheter, or both, and other CVC-related complications such as dislocation of CVCs, other CVC site infections and thrombosis. Main Results Three trials with a total of 245 participants were included in this review. The three trials directly compared the use of normal saline and heparin, however, between studies, all used different protocols for the standard and experimental arms with different concentrations of heparin and different frequency of flushes reported. In addition, not all studies reported on all outcomes. The quality of the evidence ranged from low to very low because there was no blinding, heterogeneity and inconsistency between studies was high and the confidence intervals were wide. CVC occlusion was assessed in all three trials (243 participants). We were able to pool the results of two trials for the outcomes of CVC occlusion and CVC-associated blood stream infection. The estimated rate ratio for CVC occlusion per 1000 catheter days between the normal saline and heparin group was 0.75 (95% CI 0.10 to 5.51, two studies, 229 participants, very low quality evidence). The estimated rate ratio for CVC-associated blood stream infection was 1.48 (95% CI 0.24 to 9.37, two studies, 231 participants; low quality evidence). The duration of catheter placement was reported to be similar between the two study arms, in one study (203 participants). Authors' Conclusions The review found that there was not enough evidence to determine the effects of intermittent flushing of heparin versus normal saline to prevent occlusion in long term central venous catheters in infants and children. Ultimately, if this evidence were available, the development of evidenced-based clinical practice guidelines and consistency of practice would be facilitated.
Resumo:
The application of Raman spectroscopy to the study of the copper chloride minerals nantokite, eriochalcite and claringbullite has enabled the vibrational modes for the CuCl, CuOH and CuOH2 to be determined. Nantokite is characterised by bands at 205 and 155 cm-1 attributed to the transverse and longitudinal optic vibrations. Nantokite also has an intense band at 463 cm-1, eriochalcite at 405 and 390 cm-1 and claringbullite at 511 cm-1. These bands are attributed to CuO stretching modes. Water librational bands at around 672 cm-1 for eriochalcite have been identified and hydroxyl deformation modes of claringbullite at 970, 906 and 815 cm-1 are observed. Spectra of the three minerals are so characteristically different that the minerals are readily identified by Raman spectroscopy. The minerals are often determined in copper corrosion products by X-ray diffraction. Raman spectroscopy offers a rapid, in-situ technique for the identification of these corrosion products.
Resumo:
Background - This study examined demographic profile, continuation rates and reasons for removal among Implanon® users accessing two family planning clinics in Queensland, Australia. Study Design - A retrospective chart audit of 976 women who attended for implant insertion over a 3-year period between May 2001 and May 2004. Results - Continuation rates showed that at 6 months after insertion, 94% of women continued, 74% continued at 1 year and 50% continued at 2 years. Metropolitan women were more likely than rural women to discontinue use because of dissatisfaction with bleeding patterns. Cox regression analysis showed that those attending the regional clinic experienced significantly shorter time to removal. Conclusions - Implanon® continuation rates and reasons for removal differ between clinics in metropolitan and rural locations. A cooling-off period did not affect the likelihood of continuation with Implanon®. Preinsertion counselling should emphasize potential changes in bleeding patterns.
Resumo:
Titanate nanofibers with two formulas, Na2Ti3O7 and Na1.5H0.5Ti3O7, respectively, exhibit ideal properties for removal of radioactive and heavy metal ions in wastewater, such as Sr2+ , Ba2+ (as substitute of 226Ra2+), and Pb2+ ions. These nanofibers can be fabricated readily by a reaction between titania and caustic soda and have structures in which TiO6 octahedra join each other to form layers with negative charges; the sodium cations exist within the interlayer regions and are exchangeable. They can selectively adsorb the bivalent radioactive ions and heavy metal ions from water through ion exchange process. More importantly, such sorption finally induces considerable deformation of the layer structure, resulting in permanent entrapment of the toxic bivalent cations in the fibers so that the toxic ions can be safely deposited. This study highlights that nanoparticles of inorganic ion exchangers with layered structure are potential materials for efficient removal of the toxic ions from contaminated water.
Resumo:
The effectiveness of using thermally activated hydrotalcite materials has been investigated for the removal of arsenate, vanadate, and molybdate in individual and mixed solutions. Results show that increasing the Mg,Al ratio to 4:1 causes an increase in the percentage of anions removed from solution. The order of affinity of the three anions analysed in this investigation is arsenate, vanadate, and molybdate. By comparisons with several synthetic hydrotalcite materials, the hydrotalcite structure in the seawater neutralised red mud (SWN-RM) has been determined to consist of magnesium and aluminium with a ratio between 3.5:1 and 4:1. Thermally activated seawater neutralised red mud removes at least twice the concentration of anionic species than thermally activated red mud alone, due to the formation of 40 to 60 % Bayer hydrotalcite during the neutralisation process.
Resumo:
The periosteum plays an indispensable role in both bone formation and bone defect healing. In this study we constructed an artificial in vitro periosteum by incorporating osteogenic differentiated bone marrow stromal cells (BMSCs) and cobalt chloride (CoCl(2))-treated BMSCs. The engineered periostea were implanted both subcutaneously and into skull bone defects in SCID mice to investigate ectopic and orthotopic osteogenesis and vascularization. After two weeks in subcutaneous and four weeks in bone defect areas, the implanted constructs were assessed for ectopic and orthotopic osteogenesis and vascularization by micro-CT, histomorphometrical and immunohistochemical methods. The results showed that CoCl(2) pre-treated BMSCs induced higher degree of vascularization and enhanced osteogenesis within the implants in both ectopic and orthotopic areas. This study provided a novel approach using BMSCs sourced from the same patient for both osteogenic and pro-angiogenic purposes in constructing tissue engineered periosteum to enhance vascularized osteogenesis.
Resumo:
The removal of toxic anions has been achieved using hydrotalcite via two methods: (1) coprecipitation and (2) thermal activation. Hydrotalcite formed via the coprecipitation method, using solutions containing arsenate and vanadate up to pH 10, are able to remove more than 95% of the toxic anions (0.2 M) from solution. The removal of toxic anions in solutions with a pH of >10 reduces the removal uptake percentage to 75%. Raman spectroscopy observed multiple A1 stretching modes of V−O and As−O at 930 and 810 cm−1, assigned to vanadate and arsenate, respectively. Analysis of the intensity and position of the A1 stretching modes helped to identify the vanadate and arsenate specie intercalated into the hydrotalcite structure. It has been determined that 3:1 hydrotalcite structure predominantly intercalate anions into the interlayer region, while the 2:1 and 4:1 hydrotalcite structures shows a large portion of anions being removed from solution by adsorption processes. Treatment of carbonate solutions (0.2 M) containing arsenate and vanadate (0.2 M) three times with thermally activated hydrotalcite has been shown to remove 76% and 81% of the toxic anions, respectively. Thermally activated hydrotalcite with a Mg:Al ratio of 2:1, 3:1, and 4:1 have all been shown to remove 95% of arsenate and vanadate (25 ppm). At increased concentrations of arsenate and vanadate, the removal uptake percentage decreased significantly, except for the 4:1 thermally activated hydrotalcite. Thermally activated Bayer hydrotalcite has also been shown to be highly effective in the removal of arsenate and vanadate. The thermal activation of the solid residue component (red mud) removes 30% of anions from solution (100 ppm of both anions), while seawater-neutralized red mud removes 70%. The formation of hydrotalcite during the seawater neutralization process removes anions via two mechanisms, rather than one observed for thermally activated red mud.